Properties of Pure Substances

Solution The energy balance of the control volume as shown in Fig. Ex. 9.18 gives:

Q0 +wh = Q0+th

T=296K

why

Geothermal
steam

To=218K

(a) (b)

The entropy balance is:

- [g + wsll
T

where T is the temperature maintained in the homes.

Solving for O,

W[(hl —Tos1) — (1 —Tosz)]‘ToS gen
(Ty/T) -1

Q:

By second law, ng > 0.
Therefore, for a given discharge state 2, the maximum () would be

o = w(b, —b,)
mx (Ty/T) -1
State-1: T, = 150°C = 423 K, saturated vapour

h, =2746.4 kJ/kg
s, = 6.8387 kl/kgK

State-2: T, — 100°C = 373 K, saturated liquid
h, = 419.0 kJ/kg
s, = 1.3071 kJ/kg K

So, since T, =318K,

b, =h, — T,s, = 2746.4 — 318 x 6.8387 = 571.7 kl/kg
b,=h, — T,s, = 419.0 — 318 x 1.3071 = 3.3 ki/kg
50%(571.7-3.3)

0. = =3.82 x 10°kJ/h = 106 kW
max T (318/296) — 1

Ans.
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Review Questums

What is a pure substance?
What are saturation states?
What do you understand by triple point? Give the

9.9

Draw the phase equilibrium diagram for a pure
substance on h—s plot with relevant constant
property lines.

pressure and temperature of water at its triple point. 9.10  Why do the isobars on Mollier diagram diverge
What is the critical state? Explain the terms from one another?
critical pressure, critical temperature and critical 9.11 Why do isotherms on Mollier diagram become
volume of water? horizontal in the superheated region at low
What is normal boiling point. pressures?
Draw the phase equilibrium diagram on p—v coor- 9.12 What do you understand by the degree of super-
dinates for a substance which shrinks in volume on heat and the degree of subcooling?
melting and then for a substance which expands in 9.13 What is quality of steam? What are the different
volume on melting. Indicate thereon the relevant methods of measurement of quality?
constant property lme.s.' ) ) 9.14 Why cannot a throttling calorimeter measure the
Draw the phase equnhbru{m diagram for a purc quality if the steam is very wet? How is the quality
substance on p—T coordinates. Why does the measured then?
A . o
fusion line for water ‘h-avc? negaflve slope’ 9.15 What is the principle of operation of an electrical
Draw the phase equilibrium diagram for a pure calorimeter?
substance on T—s plot with relevant constant
property lines.
Problems
Complete the following table of properties for 1 kg of water (liquid, vapour or mixture).
P t v x Super-heat . k. . ... s
(bar) (°C) (m'lkg) (%) 0 (KJlkg) — (WikgK)

(a) — 35 25.22 — — — —

(b) — — 0.001044 — — 419.04 —

(© — 212.42 — 90 — — —

@ 1 —S T e — — — 6.104

(e) 10 320 — — — — _

(¢3] 5 — 0.4646 — — — —

(2 4 — 0.4400 — — — —

(h) e 500 — —_ 34453 —

(i) 20 — — — 50 — —

1€) 15 — — — — ~— 7.2690

fa) A ngid vessel of volume 0.86 m® contains
1 kg of steam at a pressure of 2 bar. Evaluate the
specific volume, temperature, dryness fraction,
internal energy, enthalpy, and entropy of steam.
(b) The steam is heated to raise its temperature
to 150°C. Show the process on a sketch of
the p—v diagram, and evaluate the pressure,
increase in enthalpy, increase in internal

energy, increase in entropy of steam, and the

heat transfer. Evaluate also the pressure at
which the steam becomes dry saturated.

Ans. (a) 0.86 m3/kg, 120.23°C, 0.97,

2468.54 kJ/kg, 2640.54 kJ/kg, 6.9592 kl/kg K

(b) 2.3 bar, 126 kJ/kg,

106.6 ki/kg, 0.2598 kJ/kg K, 106.6 kJ/K
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Ten kg of water at 45°C is heated at a contant

pressure of 1C bar until it becomes superheated

vapour at 300°C. Find the changes in volume,
enthalpy, internal energy and entropy.

Ans. 2.569 m?, 28627.5 kJ,

26047.6 kJ, 64.842 kJ/K

Water at 40°C is contintously sprayed into a pipe-
line carrying 5 tonnes of steam at S bar, 300°C per
hour. At a section downstream where the pressure
is 3 bar, the quality is to be 95%. Find the rate of
water spray in kg/h. Ans. 912.67 kg/h
A rigid vessel contains 1 kg of a mixture of satu-
rated water and saturated steam at a pressure of
0.15 MPa. When the mixture is heated, the state
passes through the critical point. Determine
(a) the volume of vessel (b) the mass of liquid and
of vapour in the vessel initially, (c) the tempera-
ture of the mixture when the pressure has risen to
3 MPa, and (d) the heat transfer required to pro-
duce the final state (c).
Ans. (a) 0.003155 m>, (b) 0.9982 kg,
0.0018 kg, (c) 233.9°C, (d) 581.46 kJ/kg

A rigid closed tank of volume 3 m?® contains 5 kg
of wet steam at a pressure of 200 kPa. The tank
is heated until the steam becomes dry saturated.
Determine the final pressure and the heat transfer
to the tank. Ans. 304 kPa, 3346 kJ
Steam flows through a small turbine at the rate of
5000 kg/h entering at 15 bar, 300°C and leaving
at 0.1 bar with 4% moisture. The steam enters at
80 m/s at a point 3 m above the discharge and leaves
at 40 m/s. Compute the shaft power assuming that
the device is adiabatic but considering kinetic and
potential energy changes. How much error would
be made if these terms were neglected? Calculate
the diameters of the inlet and discharge tubes.
Ans. 765.6 kW, 0.44%, 6.11 cm, 78.9 cm

A sample of steam from a boiler drum at 3 MPa
is put through a throttling calorimeter in which
the pressure and temperature are found to be
0.1 MPa, 120°C. Find the quality of the sample
taken from the boiler. Ans. 0.951
It is desired to measure the quality of wet steam at
0.5 MPa. The quality of steam is expected to be not
more than 0.9.
(a) Explain why a throttling calorimeter to atmo-
spheric pressure will not serve the purpose.
(b) Will the use of a separating calorimeter,
ahead of the throttling calorimeter, serve
the purpose, if at best 5°C of superheat is
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desirable at the end of throttling? What is the
minimum dryness fraction required at the
exit of the separating calorimeter to satisfy
this condition? Ans. 0.97
The following observations were recorded in an
experiment with a combined separating and throt-
tling calorimeter:
Pressure in the steam main—15 bar
Mass of water drained from the separator—0.55 kg
Mass of steam condensed after passing through
the throttle valve —4.20 kg
Pressure and temperature after throttling—1 bar,
120°C
Evaluate the dryness fraction of the steam in the
main, and state with reasons, whether the throt-
tling calorimeter alone could have been used for
this test. Ans. 0.85
Steam from an engine exhaust at 1.25 bar flows
steadily through an electric calorimeter and comes
out at 1 bar, 130°C. The calorimeter has two
1 kW heaters and the flow is measured to be
3.4 kg in 5 min. Find the quality in the engine
exhaust. For the same mass flow and pressures,
what is the maximum moisture that can be deter-
mined if the outlet temperature is at least 105°C?
Ans. 0.944, 0.921
Steam expands isentropically in a nozzle from
1 MPa, 250°C to 10 kPa. The steam flow rate is
1 kg/s. Find the velocity of steam at the exit from
the nozzle, and the exit area of the nozzle. Neglect
the velocity of steam at the inlet to the nozzle.
The exhaust steam from the nozzie flows into
a condenser and flows out as saturated water. The
cooling water enters the condenser at 25°C and
leaves at 35°C. Determine the mass flow rate of
cooling water.
Ans. 1224 /s, 0.0101 m?. 47.81 kg/s
A reversible polytropic process, begins with steam
at p, = 10 bar, ¢, = 200°C, and ends with p, =
1 bar. The exponent n has the value 1.15. Find the
final specific volume, the final temperature, and
the heat transferred per kg of fluid.

Properties of Pure Substances

Two streams of steam, one at 2 MPa, 300°C and
the other at 2 MPa, 400°C, mix in a steady flow
adiabatic process. The rates of flow of the two
streams are 3 kg/min and 2 kg/min respectively.
Evaluate the final temperature of the emerg-
ing stream, if there is no pressure drop due to
the mixing process. What would be the rate of
increase in the entropy of the universe? This
stream with a negligible velocity now expands
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adiabatically in a nozzle to a pressure of 1 kPa.
Determine the exit velocity of the stream and the
exit area of the nozzle.

Ans. 340°C, 0.042 kJ/K min, 1530 m/s, 53.77 cm?

Boiler cteam at 8 bar, 250°C, reaches the engine
control valve through a pipeline at 7 bar, 200°C. It
is throttled to 5 bar before expanding in the engine
to 0.1 bar, 0.9 dry. Determine per kg of steam
(a) the heat loss in the pipeline, (b) the temperature
drop in passing through the throttle valve, (c) the
work output of the engine, (d) the entropy change
due to throttling and (e) the entropy change in

passing through the engine.
Ans. (a) 105.3 kl/kg, (b) 5°C, (c) 499.35 ki/kg,
(d) 0.1433 kJ/kg K, (e) 0.3657 kJ/kg K

Tank A (Fig. P9.16)hasa volume of 0.1 m?and con-
tains steam at 200°C, 10% liquid and 90% vapour
by volume, while tank B is evacuated. The valve is
then opened, and the tanks eventually come to the
same pressure, which is found to be 4 bar. During
this process, heat is transferred such that the steam
remains at 200°C. What is the volume of tank B?

Ans. 4.89 m?

Calculate the amount of heat which enters or leaves
1 kg of steam initially at 0.5 MPa and 250°C,
when it undergoes the following processes:

(2) Itis confined by a piston in a cylinder and
is compressed to 1 MPa and 300°C as the
piston does 200 kJ of work on the steam.

(b) It passes in steady flow through a device and
leaves at 1 MPa and 300°C while, per kg of
steam flowing through it, a shaft puts in
200 kJ of work. Changes in K.E. and PE.
are negligible.

(c) It flows into an evacuated rigid container
from a large source which is maintained at
the initial condition of the steam. Then 200
kJ of shaft work is transferred to the steam, so
that its final condition is 1 MPa and 300°C.

Ans. (a) — 130 kJ (b) — 109 kJ,
and (c) — 367 kJ

A sample of wet steam from a steam main flows

steadily through a partially open valve into a pipeline

in which is fitted an electric coil. The valve and the
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pipeline are well insulated. The steam mass flo
rates 0.008 kg/s while the coil takes 3.91 amperes
at 230 volts. The main pressure is 4 bar, and the
pressure and temperature of the steam downstream
of the coil are 2 bar and 160°C respectively. Steam
velocities may be assumed to be negligible.
(a) Evaluate the quality of steam in the main.
(b) State, with reasons, whether an insulated
throttling calorimeter could be used for this
test. Ans. (2) 0.97, (b) not suitable
Two insulated tanks, 4 and B, are connected by
a valve. Tank 4 has a volume of 0.70 m® and
contains steam at 1.5 bar, 200°C. Tank B has a
volume of 0.35 m? and contains steam at 6 bar
with a quality of 90%. The valve is then opened,
and the two tanks come to a uniform state. If there
is no heat transfer during the process, what is the
final pressure? Compute the entropy change of
the universe. Ans. 322.6 KPa, 0.1985 kJ/K
A spherical aluminium vessel has an inside diam-
eter of 0.3 m and a 0.62 cm thick wall. The vessel
contains water at 25°C with a quality of 1%. The
vessel is then heated until the water inside is satu-
rated vapour. Considering the vessel and water
together as a system, calculate the heat transfer
during this process. The density of aluminium is
2.7 g/em® and its specific heat is 0.896 ki/kg K.
Ans. 2682.82 kJ
Steam at 10 bar, 250°C flowing with negligible
velocity at the rate of 3 kg/min mixes adiabati-
cally with steam at 10 Bar, 0.75 quality, flow-
ing also with negligible velocity at the rate of
5 kg/min. The combined stream of steam is throt-
tled to 5 bar and then expanded isentropically
in a nozzle to 2 bar. Determine (a) the state of
steam after mixing, (b) the steam after throttling,
(c) the increase in entropy due to throttling,
(d) the velocity of steam at the exit from the
nozzle, and (e) the exit area of the nozzle. Neglect
the K.E. of steam at the inlet to the nozzle.
Ans. (a) 10 bar, 0.975 dry, (b) 5 bar, 0.894 dry,
(c) 0.2669 kJ/kg K, (d) 540 m/s, (e) 1.864 cm?

Steam of 65 bar, 400°C leaves the boiler to enter
a steam turbine fitted with a throttle governor. At
a reduced load, as the governor takes action, the
pressure of steam is reduced to 59 bar by throt-
tling before it is admitted to the turbine. Evaluate
the availabilities of steam before and after the
throttling process and the irreversibility due to it.

Ans. 1=21kJ/kg
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A mass of wet steam at temperature 165°C is
expanded at constant quality 0.8 to pressure
3 bar. It is then heated at constant pressure to a
degree of superheat of 66.5°C. Find the enthalpy
and entropy changes during expansion and during
heating. Draw the T—s and ~h—s diagrams.
Ans. — 59 kJ/kg, 0.163 kJ/kg K during expansion
and 676 kJ/kg, 1.588 ki/kg K during heating

Steam enters a turbine at a pressure of 100 bar and
a temperature of 400°C. At the exit of the turbine
the pressure is 1 bar and the entropy is 0.6 J/g K
greater than that at inlet. The process is adiabatic
and changes in KE and PE may be neglected. Find
the work done by the steam in J/g. What is the mass
flow rate of steam required to produce a power
output of 1 kW? Ans. 625 J/g, 1.6 kg/s
One kg of steam in a closed system undergoes a
thermodynamic cycle composed the following
reversible processes: (1—2) The steam initially at
10 bar, 40% quality is heated at constant volume
until the pressure rises to 35 bar; (2—3). It is then
expanded isothermally to 10 bar; (3—1). Itis finally
cooled at constant pressure back to its initial state.
Sketch the cycle on T—s coordinates, and calculate
the work done, the heat transferred, and the change
of entropy for each of the three processes. What is
the thermal efficiency of the cycle?
Ans. 0; 1364 kJ; 2.781 KJ/K,
367.5 kJ; 404.6 kJ; 0.639 kI/K; — 209.1 kJ;
— 1611 kJ; — 3.419kJ/K 8.93%

Determine the exergy per unit mass for the steady
flow of each of the following:
(a) steam at 1.5 MPa, 500°C
(b) airat 1.5 MPa, 500°C
(c) water at 4MPa, 300K
(d) airat4 MPa, 300K
(e) airat 1.5MPa, 300K
Ans. (a) 1220 kJ/kg, (b) 424 kl/kg,
(c) 3.85 ki/kg; (d) 316 kl/kg, (e) 232 kl/kg
A liquid (c, = 6 kJ/kg K) is heated at an approxi-
mately constant pressure from 298 K to 90°C by
passing it through tubes immersed in a furnace. The
mass flow rate is 0.2 kg/s. Determine (a) the heat-
ing load in kW. (b) the exergy production rate in kW
corresponding to the temperature rise of the fluid.
Ans. (a) 78 kW, (b) 7.44 kW

A flow of hot water at 80°C is used to heat cold
water from 20°C to 45°C in a heat exchanger. The
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cold water flows at the rate of 2 kg/s. When operated
in parallel mode, the exit temperature of hot water
stream cannot be less than 55°C, while in the coun-
terflow mode, it can be as low as 30°C. Assuming
the surroundings are at 300 K, compare the second
law efficiencies for the two modes of operation.

Properties of Pure Substances

Water at 90°C is flowing in a pipe. The pres-
sure of the water is 3 bar, the mass flow rate is
10 kg/s, the velocity is 0.5 m/s and the elevation
of the pipe is 200 m above the exit plane of the
pipeline (ground level). Compute (a) the thermal
exergy flux, (b) the pressure exergy flux, (c) the
exergy flux from KE, (d) the exergy flux from PE,
(e) total exergy flux of the stream.
Ans. (a) 260 kW, (b) 2.07 kW,
(c) 1.25 x 1073 kW, (d) 19.6 kW, (e) 282 kW

A cylinder fitted with a piston contains 2 kg steam
at 500 kPa, 400°C. Find the entropy change and
the work done when the steam expands to a final
pressure of 200 kPa in each of the following ways:
(a) adiabatically and reversibly, (b) adiabatically and
irreversibly to an equilibrium temperature of 300°C.

Ans. (a) 0, 386.7 kJ, (b) 0.1976 kJ/K, 309.4 kJ

Steam expands isentropically in a nozzle from
1 MPa, 250°C to 10 kPa. The steam flow rate is
1 kg/s. Neglecting the KE of steam at inlet to the
nozzle, find the velocity of steam at exit from the
nozzle and the exit area of the nozzle.

Ans. 1223 my/s, 100 cm?

Hot helium gas at 800°C is supplied to a steam
generator and is cooled to 450°C while serving as
a heat source for the generation of steam. Water
enters the steam generator at 200 bar, 250°C and
leaves as superheated steam at 200 bar, 500°C.
The temperature of the surroundings is 27°C. For
1 kg helium, determine (a) the maximum work
that could be produced by the heat removed from
helium, (b) the mass of steam generated per kg
of helium, (c) the actual work done in the steam
cycle per kg of helium, (d) the net change for
entropy of the universe, and (e) the irreversibility.
Take the average c, for helium as 5.1926 kJ/kg K
and the properties of water at inlet to the steam
generator as those of saturated water at 250°C.
Ans. (a) 1202.4 kJ/kg He,
(b) 0.844 kg H,O/kg He (c) 969.9 kJ/kg He,
(d) 0.775 kJ/(kg He-K), (¢) 232.5 ki/kg He



10.1 ‘ AVOGADRO’S LAW

A mole of a substance has a mass numerically equal to the molecular weight of the substance.

One g mol of oxygen has a mass of 32 g, 1 kg mol of oxygen has a mass of 32 kg, 1 kg mol of nitrogen
has a mass of 28 kg, and so on.

Avogadro’s law states that the volume of a g mol of all gases at the pressure of 760 mm Hg and temperature
of 0°C is the same, and is equal to 22.4 litres. Therefore, 1 g mole of a gas has a volume of 22.4 x 103 cm?
and 1 kg mol of a gas has a volume of 22.4 m? at normal temperature and pressure (N.T.P):

For a certain gas, if m is its mass in kg, and p its molecular weight, then the number of kg moles of the
gas, n, would be given by

n= _mke = kg moles
LS
) kg mol
The molar volume, v, is given by
_V 3
v= — m’/kg mol
n

where V is the total volume of the gas in m’.

10.2 q EQUATION OF STATE OF A GAS

The functional relationship among the properties, pressure p, molar or specific volume v, and temperature 7,
is known as an equation of state, which may be expressed in the form,
fp,v,T)=0

If two of these properties of a gas are known, the third can be evaluated from the equation of state.

It was discussed in Chapter 2 that gas is the best-behaved thermometric substance because of the fact that
the ratio of pressure p of a gas at any temperature to pressure p, of the same gas at the triple point, as both p
and p, approach zero, approaches a value independent of the nature of the gas. The ideal gas temperature T of
the system at whose temperature the gas exerts pressure p (Article 2.5) was defined as

T=273.16 lim £ (Const. V)
p—0p,
4 )
T=273.16 lim — (Const. p)
pp—0 Vt
The relation between pv and p of a gas may be expressed by means of a power series of the form
pv=A(1+B'p+CPp*+.) (10.1)

where 4, B, C’, etc., depend on the temperature and nature of the gas.
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A fundamental property of gases is that lim lim(pv) = 58.9 litre atm/g mol

o p—0 ° p—=0  sulphur point
(pv) is independent of the nature of the gas and s, 60
depends only on 7. This is shown in Fig. 10.1, £ 1 N,
where the product pv is plotted against p for four ; 595 Air
different gases in the bulb (nitrogen, air, hydro- = 59 H,, O,
o . >
gen, and oxygen) at the boiling point of sulphur, Q

i 1 ! 1 ]

at steam point and at the triple point of water. In 0 10 zlo 30 20
each case, it is seen that as p — 0, pv approaches — p, atm
the same value for all gases at the same tempera- (@)
ture. From Eq. (10.1)
lim pv=4 - lim(pv) = 30.62 litre atm/g mol
p—0 5 p—-0 steam point H
Therefore, the constant 4 is a function of temper- £~ 30 Nz
ature only and independent of the nature of the gas. E T 305 Al
«©
. . li O,
hm—‘li(Const.V)=hmi=M=i .E 30k
P Py 4 (P V)t A t g_
. 1 1 1 ! 1 1 Il 1 |
im - (Const. p) = tim 2 = fmpy_ A4 0 10 20 30 40
V, pV, lim(pv), A4, —p, atm

The ideal gas temperature T, 1s thus

T=273.16 Jm(@v) -

lim(pv), = 22.42 litre atm/g mol
lim(pv), g p—=o Ho
. lim(pv) 3
lim (pv) = {——‘ T £ N2
= 1316 s | 22 Air
The term within bracket is called the universal E 21 02
gas constant and is denoted by R. Thus, 20 N N N I Y N S W
i 0 10 20 30 40
R = im(pv), (10.2) — p, atm
273.16 (c)
The value obtained for giﬂ) (pv),is 22.4 4 For any gas 1im (pv);. is independent of the
’ —0
litre-atm nature of thefgas and depends only on T
g mol 5= 224 _ g lie-am
273.16 g mol K
The equation of state of a gas is thus
,llilr(l)p\_l = RT (10.3)

where V is the molar volume.

10.3 ‘ IDEAL GAS

A hypothetical gas which obeys the law py = RT at all pressures and temperatures is called an ideal gas.
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Real gases do not conform to this equation of state with complete accuracy. As p — 0, or T — oo, the real gas
approaches the ideal gas behaviour. In the equation pv = RT ,as T —0,i.e.t — — 273.15°C, if Vv remains
constant, p — 0, or if p remains constant v — 0. Since negative volume or negative pressure is inconceivable,
the lowest possible temperature is 0 K or — 273.15°C. T'is, therefore, known as the absolute temperature.

There is no permanent or perfect gas. At atmospheric condition only, these gases exist in the gaseous state.
They are subject to liquefication or solidification, as the temperatures and pressures are sufficiently lowered.

From Avogadro’s law, when p = 760 mm Hg = 1.013 x 10° N/m?, T=273.15K, and v =224 m?kg mol

= _ 1.013-10°-22.4
273.15
= 8314.3 Nmvkg mol K
= 8.3143 kl/kg mol K

Since v = V/n, where V is the total volume and n the number of moles of the gas, the equation of state for
an ideal gas may be written as

pV = nRT (10.4)
Also n=2
7]
where p is the molecular weight _
R
V=m-—T
P ©
or pV =mRT (10.5)
where R = characteristic gas constant = % (10.6)
For oxygen, e.g.,
R, = 83193 _ 02508 kikg K
32
For air,
R, = 3218 _ 028710k K
28.96

There are 6.023 x 1023 molecules in a g mol of a substance.
This is known as Avogadro’s number (4).

A4 = 6.023 x 10?° molecules/kg mol
In n kg moles of gas, the total number of molecules, N, are

N=nAd
or n=N/A
pv=NR —NkT (10.7)
where K = Boltzmmann constant _A 83143
- R _ 8143 _ 38 102 J/molecule K

A 6.023x10%
Therefore, the equation of state of an ideal gas is given by

pV =mRT
= nRT
= NKT
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10.3.1 Specific Heats, Internal Energy, and Enthalpy of an Ideal Gas

An ideal gas not only satisfies the equation of state pv = RT, but its specific heats are constant also. For real
gases, these vary appreciably with temperature, and little with pressure.
The properties of a substance are related by
Tds = du + pdv

or ds= P g (10.8)
T T

The internal energy u is assumed to be a function of Tand v, i.e.

u=f(T,v)

ou Ou
du=|—| dT —| d 10.9
or u [BT]V + [ ™ ]T v (10.9)

From Egs (10.8) and (10.9)
Ou

ds = 1(‘9“) ar+ L{|%%] +p av (10.10)
v av T

T rler T

Again, let
s=f(T,v)

Os Os
ds=1|—| dT — d 10.11
[BT]V + ov)r Y ¢ )

Comparing Egs (10.10) and (10.11)

[Qi] ~ l[‘?l] (10.12)
aT), ~ T\oT),

l@vT T|\0v); P

Differentiating Eq. (10.12) with respect to v when T is constant

(10.13)

o’ _ 1 0% (10.14)
oTdv T 9Tov
Differentiating Eq. (10.13) with respect to T when v is constant
2 2
s _ 1 Ou +l[?£] _LZ[QK] - £ (10.15)
ovodr T ovOT TI\OT), T\ov)y T
From Egs (10.14) and (10.15)
Lo P o) o) g
ToT-9v Tov-or T\dT), T*\ov)y T?

Ou Bp]
ou) . _rlo (10.16)
Bv]T P [ar )

or

For an ideal gas
pv=RT

v[a—p] =R
orT |,
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[a_P] _R_p (10.17)
or v v T
From Eqgs (10.16) and (10.17) 5
[—“] =0 (10.18)
ov);
Therefore, u does not change when v changes at constant temperature.

Bu

Similarly, if u = f(T, p), it can be shown that [ 3
/4

] = 0. Therefore, 4 does not change with p either, when
T

T remains constant.
u does not change unless T changes.

Then u=f(T) (10.19)
only for an ideal gas. This is known as Joule s law.
If u =f(T’ V)
du = @] dT + [% dv
oT J, ov);
Since the last term is zero by Eq. (10.18), and by definition
7]
c, = |—
Y \ary,
du=c, dT (10.20)

The equation du = ¢, dT holds good for an ideal gas for any process, whereas for any other substance it is
true for a constant volume process only.
Since c, is constant for an ideal gas,

Au=c, AT
The enthalpy of any substance is given by
h=u+pv
For an ideal gas
h=u+RT
Therefore
h=f(T) (10.21)

only for an ideal gas
Now dh =du + RAT
Since R is a constant

Ah = Au+ RAT
=c, AT + RAT
=(c, +R) AT (10.22)
Since 4 is a function of T only, and by definition
_ [@]
%= or),
dh =c,dT (10.23)

or Ah=c AT (10.24)
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From Eqs (10.22) and (10.23)
c,=c,+ R
or cp—cv:R (10.25)
The Eq.dh = ¢ » dT holds good for an ideal gas, even when pressure changes, but for any other substance,

this is true only for a constant pressure change.
The ratio of cp/cv is of importance in ideal gas computations, and is designated by the symbol v, i.e.

% .,
CV
or C,=7¢,
From Eq. (10.25
q. ( ) (v=1ye, =R
R
c, =——
v-—1
and kJ/kg K (10.26)
C :L
P ,)_1

IfR = is substituted in Eq. (10.26)

= | =i

€y, = pe, = (cv )mol = —_—I

and i 5 (/g moh (K) (10.27)
Ep = pc, = (cp)ml = ’YTI

¢, and ¢, are the molar or molal specific heats at constant volume and at constant pressure respectively.

It can be shown by the classical kinetic theory of gases that the values of ~ are 5/3 for monatomic gases and
7/5 for diatomic gases. When the gas molecule contains more than two atoms (i.e. for polyatomic gases) the
value of v may be taken approximately as 4/3. The minimum value of ~y is thus 1 and the maximum is 1.67.

The value of -y thus depends only on the molecular structure of the gas, i.e. whether the gas is monatomic.
diatomic or polyatomic having one, two or more atoms in a molecule. It may be noted that ¢_ and ¢, ot an
ideal gas depend only on v and R, i.e. the number of atoms in a molecule and the molecular weight of the gas.
They are independent of temperature or pressure of the gas.

10.3.2 Entropy Change of an Ideal Gas

From the general property relations
Tds = du + pdv
Tds = dh — vdp
and for an ideal gas, du = ¢, dT, dh = ¢, dT, and pv = RT, the entropy change between any two states 1 and

2 may be computed as given below d
ds= %4 P dy
T T

:(,Vﬂ—{»R.d_v
T %

N

T
—s,=c,InZ +RIn 2 (10.28)

2
1 Vi

1
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Also ds.—_%_ldp=cp_d_T_R_d£
T T T p
or s,—s,=cin2 _Rin P2 (10.29)
PoT, P
Since R = ¢, — ¢, Eq. (10.29) may be written as
s,—s =c¢ lnz‘l —cmnf2 +cv1n£-2—
Pn P op P
V. D
or s,—s,=c.In -2 +¢c In2 10.30
2 1 p v v §2 ( )

Any one of the three Egs (10.28), (10.29), and (10.30), may be used for computing the entropy change
between any two states of an ideal gas.

10.3.3 Reversible Adiabatic Process

The general property relations for an ideal gas may be written as
Tds = du + pdv = ¢, dT + pdv

and Tds=dh—vdp=cpdT—vdp
For a reversible adiabatic change, ds = 0
c. ¢, dT = — pdv (10.31)
and ¢, dT'=vdp (10.32)
By division
Sy MP
o, 7 pdv
dp dv
e Il A
or ) +v .
or d(Inp)+vd(nv)=d(nc)

where c is a constant.
: Inp+~vylnv=Inc
pV=c (10.33)
Between any two states 1 and 2

- 2
PV =PV

-
or P _ v
b v,

For an ideal gas

pv=RT
From Eq. (10.33)
p=c-v?"?
c-v7.v=RT
¢-vi="=RT

v~ = constant (10.34)
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Between any two states 1 and 2, for a reversible adiabatic process in the case of an ideal gas

Lovy e Tovy !
T S
or 2 - |h (10.35)
T, v,
Similarly, substituting from Eq. (10.33)

1y
v = [i] in the Eq. pv = RT
P

plW x ¢’ =RT

Tp'! — Y7 = constant

(10.36)
Between any two states | and 2
Tlpl(l -V = szz(l -y
PN i
T
Z= %2— ’ (10.37)
1 1

Equations (10.33), (10.34), and (10.36) give the relations among p, v, and T in a reversible adiabatic pro-
cess for an ideal gas.

The internal energy change of an ideal gas for a reversible adiabatic process is given by

Tds =du +pdv=20

2 2 2
or fduz—fpdv=~f—%dv
1 1 2V

Y o— V= Y =
where pvV'=pVv, =p, v, =c¢

-y __ =7 AT e Y.yl
ch Vi _ Phva v, v v

u, —u, =
2 1 51 Y1
_ DaY2a — P
v—1
_RIG,-T) _ RT (T,
v -1 v—1lT,
y-1/5
_RLp (10.38)
y-1I{{p

The enthalpy change of an ideal gas for a reversible adiabatic process may be similarly derived.
Tds=dh —vdp =0

2 == 2 = 2 (c)l "
. Jran=fivw - |

/5
p
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where v\ =p,v,=c¢

hy—h = e N V! [0, %7 — p 1= D]

1 1
p (y—D/y
- __7_1 (@, v, )" (p)r = W [_2] —1
Y- y 2

(r—-D/vy

TP & ~1
At RV

'7RT (v=1/v
ikt §

v—1

21
P
The work done by an ideal gas in a reversible adiabatic process is given by
d0=dU+ g¢wW=0
or dw=-dUu
i.e. work is done at the expense of the internal energy.
Wi ,=U-U=m@u —u)

-1 (10.39)

_ m(pv, — P,V,) - mR(T, -T,) _ mRT,
~—1 ~y—1 -1

(y=1D/v
1_[22_] ] (10.40)
P

1

where m is the mass of gas.
In a steady flow process, where both flow work and external work are involved, we have from S.FE.E.,

2 R(T, —T.
W+ AV +ghz=h —hy=c, (T, — T,) = IRI, -Ty)
2 ' v-1
y-1/y
- "(1’1”71_11’2”2) - 7“/ - p |1-| 22 (10.41)
- 1
If K.E. and PE. changes are neglected,
vy
W, = :77_1 PV, 1—[.51] ] (10.42)
- 1

10.3.4 Reversible Isothermal Process

When an ideal gas of mass m undergoes a reversible isothermal process from state 1 to state 2, the work done

is given by fde fVZ S
1 n
or W, = fy? .”%T_ d¥ = mRTIn %
=mRTIn 2L (10.43)

D>
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The heat transfer involved in the process .
0 L,=U-U +W _,
=W, ,=mRTIV,/V, =T1T(S, - S) (10.44)

10.3.5 Polytropic Process

An equation of the form pv® = constant, where n is a constant can be used approximately to describe many
processes which occur in practice. Such a process is called a polytropic process. It is not adiabatic, but it can
be reversible. It may be noted that -y is a property of the gas, whereas n is not. The value of n depends upon the
process. It is possible to find the value of n which more or less fits the experimental results. For two statses
on the process,

v =P v, (10.45)
or [_] s
Vi P,

n= logp —logp, (10.46)

logv, —logv,
For known values of p,, p,, v, and v,, n can be estimated from the above relation.
Two other relations of a polytropic process, corresponding to Eqs (10.35) and (10.37), are

n—1
L _|n (10.47)
T, V)
T n—1/n
2 [-"—2] (10.48)
T, D

(i) Entropy Change in a Polytropic Process In a reversible adiabatic process, the entropy remains con-
stant. But in a reversible polytropic process, the entropy changes. Substituting Egs (10.45), (10.47) and
(10.48) in Eqs (10.28), (10.29) and (10.30), we have three expressions for entropy change as given below

T
s,— s, =c,/In =% +RIn 22

1 Vi T
.—_i.lnT_Z_i_ R lnT_l
Y- I, n-—1 2
- T
= — "7 Rl 2 (10.49)

S (-be-n T
Relations in terms of pressure and specific volume can be similarly derived. These are

n—o P

s, — 5 = Rin 22 (10.50)
SR TCE R

and s,—s;= 22 R 2 ' (10.51)
y—1 Vi

It can be noted that when n = v, the entropy change becomes zero. If p, > p,, for n <, the entropy of
the gas decreases, and for n > +, the entropy of the gas increases. The increase of entropy may result from
reversible heat transfer to the system from the surroundings. Entropy decrease is also possible if the gas is
cooled.
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(ii) Heat and Work in a Polytropic Process Using the first law to unit mass of an ideal gas,

Q—W=u,—u,
=, (1,-1)=R0=T)
v—1

Y 2 404!

v—1
( n—1/n n—1
= Ah 52—] —1] = A% {i] ~1 (10.52)
Y=-1{p |y
For a steady flow system of unit mass of ideal gas, the S.EE.E. Eq. (5.10), gives
72
Q:WX—A -2—+gz :hz_hl
= (r,-1)=2R"E"T)
P
v—1
-0 (p,v, —p,v,) (10.53)
Y1 22 "1 :
For a polytropic process,
—2 n—1/n
0w —-n" 1g|- mv_l[f’_z -
2 -1 {{ A
n-1
_ 'Yplvll A I (10.54)
Y1\

Equations (10.52) and (10.54) can be used to determine heat and work quantities for a closed and a steady
flow system respectively.

(iii) Integral Property Relations in a Polytropic Process In apv" = constant process,

n—-1
2 2 n % V,
f pdv = f PV g, = _111_1_1_[_1]
1 1y v,

n—1
n—1/n
= PN _|P2 (10.55)
n—1 )2
Simi
imilarly, .
2 npy 1 v
M n—1 v,
n—1/n
= PN _| P2 (10.56)
n—1 Py

The integral of Tds is obtained from the property relation
Tds = du + pdv
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j;z Tds:fl2 du+j;2 pdv :uz—ul—{-‘];2 pdv

Substituting from Eqs (10.50) and (10.53)
n—1/n
P |

S el
S = G P

S n—}
- v,
= — v, 11— 1
(r—Dn—1 7" [”]l
Yy—n
= R(T, - T. 10.57
Go—p " (1037
Since R/(y — 1) = ¢, and putting AT =T, — T}, the reversible heat transfer
0, = fz Tds=c, JZ" AT =c, AT (10.58)
1 1—n

where ¢, = ¢, (y — n)/(1 — n) is called the polytropic specific heat. For n > « there will be positive heat
transfer and gain in entropy. For n < +, heat transfer will be negative and entropy of the gas would decrease.
Ordinarily both heat and work are involved in a polytropic process. To evaluate the heat transfer during
such a process, it is necessary to first evaluate the work via either [ pdvor — J vdp, depending on whether it
is a closed or an open steady flow system. The application of the first law will then yield the heat transfer.
The polytropic processes for various values of n are shown in Fig. 10.2 on the p—v and T—s diagrams.
pvt=C
On differentiation,
vidp+pnv"~l1dv=0
@ _ P (10.59)
dv v
The slope of the curve increases in the negative direction with increase of n. The values of n for some
familiar processes are given below
Isobaric process (p =c),n =0
Isothermal process (T =c¢),n =1
Isentropic process (s = ¢), n = 7y
Isometric or isochoric process (v = c), n = .

n==%oc

n=-2

n=-1
n=-05

p

n=0
n=1(T=0C)

n=v(s=c)

2\ Process in which pv* = constant
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10.4 ﬂ EQUATIONS OF STATE

The ideal gas equation of state py=RT'1 can be established from the positulates of the kinetic theory of gases devei-
oped by Clerk Maxwell, with two important assumptions that there is little or no attraction between the molecules
of the gas and that the volume occupied by the molecules themselves is negligibly small compared to the volume of
the gas. When pressure is very small or temperature very large, the intermolecular attraction and the volume of the
molecules compared to the total volume of the gas are nor of much significance, and the real gas obeys very closely
the ideal gas equation. But as pressure increases, the intermolecular forces of attraction and repulsion increase, and
also the volume of the molecules becomes appreciable compared to the gas volume. So then the real gases deviate
considerably from the ideal gas equation. Van der Waals, by applying the laws of mechanics to individual molecules,
introduced two correction terms in the equation of ideal gas, and his equation is given below.

[p+4]0-0)=r (10.60)
14

The coefficient @ was introduced to account for the existence of mutual attraction between the molecules.
The term a/v? is called the force of cohesion. The coefficient b was introduced to account for the volumes of
the molecules, and is known as co-volume.

Real gases conform more closely with the van der Waals equation of state than the ideal gas equation
of state, particularly at higher pressures. But it is not obeyed by a real gas in all ranges of pressures and
temperatures. Many more equations of state were later introduced, and notable among these are the equa-
tions developed by Berthelot, Dieterici, Beattie-Bridgeman, Kammerlingh Onnes, Hirshfelder-Bird-Spotz-
McGee-Sutton, Wohl, Redlich-Kwong, and Martin-Hou.

Apart from the van der Waals equation, three two-constant equations of state are those of Berthelot,
Dieterici, and Redlich-Kwong, as given below:

RT a
Berthelot: = - (10.61)
P v—b TV? '
Dieterici: p=RL -arr, (10.62)
v—b
RT a

Redlich-Kwong: p — T”Zv(v +b)
The constants, ¢ and b are evaluated from the critical data, as shown for van der Waals equation in Article
10.6. The Berthelot and Dieterici equations of state, like the van der Waals equation, are of limited accuracy.
But the Redlich-Kwong equation gives good results at high pressures and is fairly accurate for temperatures
above the critical value.
Another two-constant equation which is again of limited accuracy is the Saha-Bose equation of state given
as follows.

(10.63)

p:_ﬂe—mqn[v‘%} (10.64)
2b v
It is, however, quite accurate for densities less than about 0.8 times the critical density.
One more widely used equation of state with good accuracy is the Beattie-Bridgeman equation:
RT(1—
p:(_ze)(v“;)_% (10.65)
v v
where
A= 4, [1—3J,B =B, [1—9],e =<

v 1% v
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There are five constants, 4, B , a, b, and ¢, which have to be determined experimentally for each gas. The
Beattie-Bridgeinan equation does not give satisfactory results in the critical point region.

All these equations mentioned above reduce to the ideal gas equation for large volumes and temperatures
and for small pressures.

10.5 VIRIAL EXPANSIONS

The relations between PV and p in the form of power series, as given in Eq. (10.1), may be expressed as
pv =A(1+Bp+CP+D'p*+..)
For any gas, from Eq. (10.3)
impv =4 = RT

p—0
_1__72 =14+Bp+CpPP+DP*+ ... (10.66)
RT
An alternative expression is N B Cc D
£_‘i = 1+T+_2.+:_3_+... (10.67)
RT v v

Both expressions in Egs (10.66) and (10.67) are known as virial expansions or virial equations of state,
first introduced by the Dutch physicist, Kammerlingh Onnes, B, C’, B, C, etc. are called virial coefficients.
B’ and B are called second virial coefficients, C’ and C are called third virial coefficients, and so on. For a
given gas, these coefficients are functions of temperature only.

The ratio pv/RT is called the compressibility factor, Z. For an ideal gas Z = 1. The magnitude of Z fora
certain gas at a particular pressure and temperature gives an indication of the extent of deviation of the gas
from the ideal gas behaviour. The virial expansions become

Z=1+Bp+Cp+Dp+.. (10.68)
and Z= 1+£+_CZ_+23+... (10.69)
vV

The relations between B/, C/ and B, C, ... can be derived as given below

P —14+Bp+CP+DP+ ..
RT _
1+ |%

v

B C
I+=+—+..
v v

B C
I+=+—+..+
vV v

=, \2
+c’ [5_7;] + ...
v

B'RT B'BRT +C'(RT)?
—+ )
v v
’= =2 10 B3
+BRTC+C’(RT) + D'(RT) iy (10.70)

=3
\4

Comparing this equation with Eq. (10.67) and rearranging
B C=B
RT (RT)?

B'=
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p/—. D—3BC+28°

— , and so on
(RT)®
Therefore -
_ PV y ,2
= ﬁ =1 +Bp+Cp
B C - B?

RT " (RT)?

(10.71)

— =2 “ . . . .
The terms B/v, C/3° etc. of the virial €xpansion arise on account of molecular interactions. If no such

interactions exist (at very low pressures) B = 0, C = 0,etc., Z

10.6 § LAW OF CORRESPONDING STATES

For a certain gas, the compressibility factor Z is a function of
p and T [Eq. (10.71)], and so a plot can be made of lines of
constant temperature on coordinates of p and Z (Fig. 10.3).
From this plot Z can be obtained for any value of p and 7,
and the volume can then be obtained from the Equation pv =
ZRT. The advantage of using Z instead of u direct plotofvisa
smaller range of values in plotting.

For each substance, there is a compressibility factor chart.
It would be very convenient if one chart could be used for all
substances. The general shapes of the vapour dome and of the
constant temperature lines on the p—v plane are similar for all
substances, although the scales may be different. This similar-
ity can be exploited by using dimensionless properties called
reduced properties. The reduced pressure is the ratio of the
existing pressure to the critical pressure of the substance, and
similarly for reduced temperature and reduced volume. Then

=L =L ,_ ¥

o > r
P c Ve

=land pv=RT.

1.5 35K

50 K
60 K
1.0 200 K

300 K

0.5

I I Y Y O T
0 100 200
p (atm)

Fig.10.3  Variation of the compressibility
factor of hydrogen with pressure

at constant temperature

where subscript » denotes the reduced property, and subscript ¢ denotes the property at the critical state.

At the same pressure and temperature the specific or molal volumes of different gases are different.
However, it is found from experimental data that at the same reduced pressure and reduced temperature, the
reduced volumes of different gases are approximately the same. Therefore, for all substances

ST
Now. L _ZR Tp,
oy, Z.RT.p
where Z_ = Pl
¢ Z=fp,T,Z)

P,
. This is called the critical compressibility factor. Therefore from Egs (10.72) and (10.73),

(10.72)

-

— (10.73)

(10.74)

Experimental values of Z, for most substances fall within a narrow range 0.20—0.30. Therefore, Z, may

be taken to be a constant and Eq. (10.74) reduces
Z=flp,T)

(10.75)
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When 7 is plotted as a function of reduced pressure and Z, a single plot, known as the generalized com-
pressibility chart, is found to be satisfactory for a great variety of substances. Although necessarily approxi-
mate, the plots are extremely useful in situations where detailed data on a particular gas are lacking but its
critical properties are available.

The relation among the reduced properties, p,, T, and v, is known as the law of corresponding states. It
can be derived from the various equations of state, such as those of van der Waals, Berthelot, and Dieterici.
For a van der Waals gas,

a )
p+v—2J (v—b)=RT

where a, b, and R are the characteristic constants of the particular gas.

p= RT a
v—b
or pv:—(pb+ RT)v: +av—ab=0

It is therefore a cubic in v and for given values of p and T
has three roots of which only one need be real. For low tem-

Critical state

for all values of p. The critical isotherm 7, at the critical state
on the p—v plane (Fig. 10.4), where the three real roots of the
van der Waals equation coincide, not only has a zero slope, but Ve —=V

also its slope changes at the critical state (point of inflection), 'Fig. 104 Critical properties on p~v diagram
so that the first and second derivatives of p with respect to v at ‘ -

T =T, are each equal to zero. Therefore

peratures, three positive real roots exist for a certain range Pef-----

of pressure. As the temperature increases the three real roots 5

approach one another and at the critical temperature they p ‘ ToT.
become equal. Above this temperature only one real root exists T E -

) RT 2
[_P] S P (10.76)
vy 1, (v.—b)" v;
9’ 2-RT, 6
2L = e __f =0 (10.77)
v et (Ve —-by v
From these two equations, by rearranging and dividing, b = é V.
Substituting the values of b in Eq. (10.76) g
R= —2
9T v,
Substituting the values of b and R in Eq. (10.60)
a |2 ~a
il | = _.T
Pt [3 v“] o7y, *
a=13p v
Therefore, the value of R becomes
' R 8P

3T

[V
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The values of a, b, and R have thus been expressed in terms of critical properties. Substituting these in the
van der Waals equation of state

3p v2 1 8 p.v,
4 2PYe (1,1 = 2B p
P [ 3 ] 3T,
2
or, ﬂ.{.?ﬁ& v 11 _8T
p. v 3] 3L
Using the reduced parameters,
p+—| Gv,— ) =8T, (10.78)
vr

In the reduced equation of state (10.78) the individual coefficients a, b and R for a particular gas hav~
disappeared. So this equation is an expression of the law of corresponding states because it reduces the
properties of all gases to one formula. It is a ‘law’ to the extent that real gases obey van der Waals equa-
tion. Two different substances are considered to be in ‘corresponding states’, if their pressures, volumes and
temperatures are of the same fractions (or multiples) of the critical pressure, volume and temperature of the
two substances. The generalized compressibility chart in terms of reduced properties is shown in Fig. 10.5(a)
and (b). It is very useful in predicting the properties of substances for which more precise data are not avail-

able. The value of Z at the critical state of a van der Waals gas is 0.375 |since R = § PeVe | At very low
pressures Z approaches unity, as a real gas approaches the ideal gas behaviour. Equation (10.78) can also be
written in the following form

3
[p,vr +v—] GBv,— 1)=8Ty,

8T,
PYe= 301 'f_'l —;3— (10.79)

Figure 10.6 shows the law of corresponding states in reduced coordinates, (p,v,) vs. p,. Differentiating
Eq. (10.79) with respect to p_ and making it equal to zero, it is possible to determine the minima of the
isotherms as shown below.

sy 3] _,
Op, [3v, =1 v |
0 |8Tv, 3| |0v,
or —— |5 =0
Ov, |3v, =1 w | op; |y,
Since - 0
op, |, =
0 \8w 31 _y
ov, [3v, -1 v |
8, 3
@v,—-1)? ¥}
2
or 3(3vr2 ) ~ 8T = PH"% Gv, - 1)
vl’ vr
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Simplifying (pv) —9pyv)+6p =0
This is the equation of a parabola passing through the minima of the isotherms (Fig. 10.6).
When p, =0,
pv,=0,9
Again p = Apv) — (P, )?
6
d
“Pr _9_2(pv)=0
d(p,v;)
p,v,=45
2
p, = 9 x4.5x(4.5) _ 3375
6

The parabola has the vertex at p v = 4.5 and p_ = 3.375, and it intersects the ordinate at 0 and 9.

Each isotherm up to that marked 7, has a minimum (Fig. 10.6). The T} isotherm has an initial horizontal portion
(p,v, = constant) so that Boyle’s law is obeyed fairly accurately up to moderate pressures. Hence, the corresponding
temperature is called the Boyle temperature for that gas. The Boyle temperature T, can be determined by making

a(p,v,
Op,

=0 whenp =0
T=Tg

T, =28

T, =Tg =254
2.0 v—/ Tr -

=~ Locus passing through the
RN minima of the isotherms

¥ T, =17
Q
15
T, =12
T, =10
T, =09
T, =08

Liquid region 1 state

0 l 10 3.375
Vapour dome

N i

e

Law of corresponding states in reduced coordinates

Above the Boyle temperature, the isotherms slope upward and show no minima.

As T, is reduced below the critical (i.e. for 7, < 1), the gas becomes liquefied, and during phase transition
isotherms are vertical. The minima of all these isotherms lie in the liquid zone.

Van der Waals equation of state can be expressed in the virial form as given below

p+12] (v—b)=RT
\4
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[2)[1-2) =ar
v+ __RT[, a)

b b
= 1++++

(where 2 < 1]
v

all b P
=RT|\1+|b——|—F+—+—5+ 10.80
*. The second virial coefficient B = b — a/RT, the third virial coefficient C = b2, etc.
From Eq. (10.71), on mass basis
B Cc-B’
v=RT|l+—p+— 4.
P PR P
To determine Boyle temperature, Ty
o(pv) _o0= B
op T=C - RT
B=0
or T, = —a—,becauseB:b -2
bR RT
The point at which B is equal to zero gives the Boyle temperature. The second virial coefficient is the

a(pv)

= B, when B is known, the behaviour of the gas at moderate pressures is

p=0
completely determined. The terms which contain higher power (Ch?, DI?, etc.) becomes significant only at

very high pressures.

most important. Since

10.7 1 OTHER EQUATIONS OF STATE

van der Waals equation is one of the oldest equations of state introduced in 1899, where the constants @ and
b are related to the critical state properties as found earlier,
1. 1RT

_ 27 RT} b=
© 64 De 3 % T8 P
The Beattie-Bridgeman equation developed in 1928 is given in Eq. 10.79, which has five constants. It
is essentially an empirical curve fit of data, and is reasonably accurate when values of specific volume are
greater than v_.

Benedict, Webb and Rubin extended the Beattie-Bridgeman equation of state to cover a broader range of
states as given below:

a=3py?

,,=££+[BRT PTG e
Ty v ;6

7 exp [w%
v

+
vT2

H—
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It has eight constants and is quite successful in predicting the p—v— T behaviour of light hydroca. ::ons
The Redlich-Kwong equation proposed in 1949 and given by Eq. 10.77 has the constants a and b in ter::.
of critical properties as follows: 20025
a=04275 RT RT,

, b=0.0867

P c p c
The values of the constants for the van der Waals, Redlich-Kwong and Benedict-Webb-Rubin equations of
state are given in Table 10.1, while those for the Beattie-Bridgeman equation of state are given in Table 10.2.
Apart from these, many other multi-constant equations of state have been proposed. With the advent of high
speed computers, equations having 50 or more constants have been developed for representing the p—v—T'
behaviour of different substances.

. : » AR e ey ﬂ 0% e S
‘g;;:stantz fbr the van der Waals, Redlich-Kwong, and Benedict- ebb-RLbzn Eqwzt‘zonsf)}r étate
1. van der Waals and Redlich-Kwong: Constants for pressure in bars, specific volume in m%/k mol, and
temperature in K
vanderWaals =~ = " Redlich-Kwong
| o A g TUTT g :
= o el
Air 1.368 0.0367 15.989 0.02541
Butane(CH) <o o0 13867 oo OM62 . . 28955 . . 0.08060
Carbon dioxide (CO,) 3.647 0.0428 64.43 0.02963
Carbonmonoxide (CO) 1474 00395 1722 002737
Methane (CH,) 2.293 0.0428 32.11 0.02965
Niogen(N) 1366, . 00386 - . 1553 0.02677
Oxygen (0,) 1.369 0.0317 17.22 0.02197
Propane (C,H) 9349 ooser T 7 Tig2a3 o T o064z
Refrigerant 12 10.49 0.0971 208.59 0.06731
Sulfur dioxide (SO,) 6883 - 00569 14480 . 003945
Water (H,0) 5.531 0.0305 142.59 002111

Source: Calculated from critical data.

2. Benedict-Webb-Rubin: Constants for pressure in bars, specific volume in m?/k mol, and temperature in K

Substancea A b5 B ¢ c a o gy
CH,, 19073 10218 0039998 0.12436 3.206 x 10° 1.006 x 10° 1.101 x 10~>  0.0340
CO, 01386 27737 0007210 004991 1512 x 10° 1404 x 105 847 x 105  0.00539
co 00371 13590 0002632 0.05454 1054 x 10° 8.676 x 10° 1.350 x 104  0.0060
CH, 00501 1879 0.003380  0.04260 2579 x 10° 2287 x 10* 1244 x 10~* ~ 0.0060
N, 0.0254 1.0676  0.002328 0.04074 7.381 x 10> 8.166 x 10! 1.272 x 10/ 0.0053

Source: H.W. Coopper, and J.C. Goldfrank, Hydrocarbon Processing, 45 (12); 141 (1967).
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p— Ru_T[l__;-](HB)_é , where A = 4, [1—2] and B = B, [1—2]

v 4 v

When PisinkPa, v isinm*kmol, TisinK,and R, = 8.314 kPa - m3/(k mol - K), the five constants
in the Beattie-Bridgeman equation are as follows:

R e LT B G b o S
Air 131.8441 0.01931 0.04611 — 0.001101 4.34 x 104
AmomAr 130782 . 0028 00331 00 o 59x10tT
Carbon dioxide, CO, 507.2836 0.07132 0.10476 0.07235 6.60 x 10°
Hellum He 2886 - 005984 . . 00MO0 < .00 40
Hydrogen, H, 20.0117 — 0.00506 0.02096 — 0.04359 504

Niwogen, N, (1362315 002617 005046 000691 420108
Oxygen, O, 151.0857 0.02562 0.04624 0.004208 4.80 x 10*

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/
S.1. Version, 3d Ed., Wiley New York, 1986, p. 46. Table 3.3.

10.8 PROPERTIES OF MIXTURES OF GASES—DALTON’S
LAW OF PARTIAL PRESSURES

Let us imagine a homogeneous mixture of inert ideal gases at a temperature T, a pressure p, and a volume V.
Let us suppose there are n, moles of gas 4,, n, moles of gas 4,, ... and upto n_
moles of gas A_ (Fig. 10.7). Since there is no chemical reaction, the mixture is
in a state of equilibrium with the equation of state

pV=(n +n,+..n) RT

where R =8.3143 ki/kg mol K SRR Mixture of guses
p= n_11?1+ﬂ_+... + nCR-T
v v Vv

The expression mRT represents the pressure that the Kth gas would exert if it occupied the volume V

alone at temperature 7. This is called the partial pressure of the Kth gas and is denoted by p,. Thus

p = nRT = n,RT . nRT
14 14
and p=p,+py+ . +P, (10.81)
This is known as Dalton’s law of partial pressures which states that the total pressure of a mixture of ideal
gases is equal to the sum of the partial pressures. RT
Now V=m+n+..+n)- -
_sn BT

p
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and the partial pressure of the Kth gas is
nRT
4

px=

Substituting the value of V _ _
_ mnRT-p  nRT )

Pe= Sny -RT Yy

v — |
Now g =n +n, + . +on

= Total number of moles of gas

The ratio n: is called the mole fraction of the Kth gas, and is denoted by x,.
k
Thus o= M S oo e
i IR SPRRRE ST
and Py =X\D, Py =X,D, ... D, = X, P
or Py =Xy Xp (10.82)
Also X +x,+ . +x =1 (10.83)

In a mixture of gases, if all but one mole fraction is determined, the last can be calculated from the above
equation. Again, in terms of masses

pV=mRT
p,V=m,R,T
pV=mRT
Adding, and using Dalton’s law
pV=(mR +mR, + ..+ m_R)T (10.84)
where p=p,+p,+..+p,
For the gas mixture
pV:(ml+m2+...+mc)RmT (10.85)

where R is the gas constant for the mixture. From Eqs (10.84) and (10.85)
- mR +mR, + ... +mR,
" mitmy, 4. tm,
The gas constant of the mixture is thus the weighted mean, on a mass basis, of the gas constants of the
components.

The total mass of gas mixture m is
m=m +..+m

R (10.86)

If 41 denotes the equivalent molecular weight of the mixture having n total number of moles.
RL=n iy + 0y, + o+
c. =Xy + Xy + o+ X
or =X x py (10.87)

A quantity called the partial volume of a component of a mixture is the volume that the component alone
would occupy at the pressure and temperature of the mixture. Designating the partial volumes by ¥ 1» V5, ete.
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pV,=mRT,pV,=mR,]1T, .. pV =mRT
or pV,+V,+ ..+ V)=mR +mR,+ ..+ mR)T (10.88)
From Eqgs (10.84), (10.85), and (10.88)
V=V, +V,+..+V, (10.89)
The total volume is thus equal to the sum of the partial volumes.

The specific volume of the mixture, v, is given by
vV vV

v: — —
m m1+m2+...+mc
or l _mt+m+..+m
v V
mmy m
14 vV V
1 1 1 1
or 5= ;|—+;)—2-+m+7¢- (10.90)

where v, v,, ... denote specific volumes of the components, each component occupying the total volume.

Therefore, the density of the mixture p=p,+po,+ ..+ p, (10.91)

10.9 ‘ INTERNAL ENERGY, ENTHALPY AND SPECIFIC HEATS OF GAS MIXTURES

When gases at equal pressures and temperatures are mixed adiabatically without work, as by inter-diffusion in
a constant volume container, the first law requires that the internal energy of the gaseous system remains con-
stant, and experiments show that the temperature remains constant. Hence, the internal energy of a mixture of
gases is equal to the sum of the internal energies of the individual components, each taken at the temperature
and volume of the mixture (i.e. sum of the ‘partial’ internal energies). This is also true for any of the thermo-
dynamic properties like H, C,, Cp, S, F, and G, and is known as Gibbs theorem. Therefore, on a mass basis

mu =mu, +mu,+ ..+ mu,

_omuymauy + .+ mu

= (10.92
m my+m,+..+m )
which is the average specific internal energy of the mixture.
Similarly, the total enthalpy of a gas mixture is the sum of the ‘partial’ enthalpies
mh_ =mh, +mh, + .. +mh
h hy + ... h
and po= i Tl ¥ F R (10.93)
m +m;+..+m,
From the definitions of specific heats, it follows that
= mec, +mec, +..+mc, (10.94)
m+m,+..+m
and _ mc, +mch: + ..+ m.C, (10.95)

pm

m+m,+..+m
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10.10% ENTROPY OF GAS MIXTURES

Gibbs theorem states that the total entropy of a mixture of gases is the sum of the partial entropies. The partial
entropy of one of the gases of a mixture is the entropy that the gas would have if it occupied the whole volume
alone at the same temperature. Let us imagine a number of inert ideal gases separated from one another by
suitable partitions, all the gases being at the same temperature T and pressure p. The total entropy (initial)

Sp=ms sy + ot =Dy
From property relation
Tds = dh — vdp = ¢, dT — vdp
ds = Epd—T—E b
T p

The entropy of 1 mole of the Kth gas at T and p
— dar = -
S5 = chK —T——Rlnp—lrsoK
where s, is the constant of integration.

- 5 \
S, =R Xng [%IE a7 +59='5-—lnp

Pk _7_'— R
1 VA
Let =_fz S42%
= 7la TR
then S;= R Xn(o —Inp) (10.96)

After the partitions are removed, the gases diffuse into one another at the same temperature and pressure,
and by Gibbs theorem, the entropy of the mixture, S, is the sum of the partial entropies, with each gas exert-
ing its respective partial pressure. Thus

S;= RX ny(oy — Inpy)

Since Py =X D
S = EZnK(aK —Inx; —Inp) (10.97)
A change in entropy due to the diffusion of any number of inert ideal gases is
S;—S8,=-RXngInx, (10.98)
or S;—S=—R (n,Inx, +n,Inx, +..+n Inx)

Since the mole fractions are less than unity, (S; — S)) is always positive, conforming to the Second Law.

Again
= p p P

S;— S, = -R [n,ln?’+n21n-pl+...+nc ln—i;—] (10.99)

which indicates that each gas undergoes in the diffusion process a free expansion from total pressure p to the

respective partial pressure at constant temperature.
Similarly, on a mass basis, the entropy change due to diffusion

S;— S, =— Zm R In Epﬁ

= —[mlRl ln%-{-msz 1n%2 + ..+ mR, 1nfpi
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10.11 ! GIBBS FUNCTION OF A MIXTURE OF INERT IDEAL GASES

From the equations

dh = ¢, dT
_dr 5
=5, g
T p
the enthalpy and entropy of 1 mole of an ideal gas at temperature 7 and pressure p are
= hy+ f ¢ dT

= fc ——+s0 Inp
Therefore, the molar Gibbs function
E=h-T5
= hy+ [dT-T [ 9 oI5, 4RI Inp
p p T

fd(uv) = fudv + fvdu =uv

Now
Let u:l,v=fcpdT
T
Then L Jear=fL1c AT+ [e, dT [—Lz] ar
T T T
Y ,dT — ff
T
ar fcpdT
fcpdT—chPT——Tf = dr
Therefore
_ _ fc dr
g§=hy -7/ dT — T5, +RT Inp
_ [ f
= RT | =~ f dT———-+lnp
Let _ _
5 h_o_if_fﬂﬂ_s‘_o
RT R T? R
Thus g = RT (6 +1np)

where ¢ is a function of temperature only.
Let us consider a number of inert ideal gases separated from one another at the same 7 and p

Gi=Xnc g
= Rr X' n(d +1np)

l 261

(10.100)

(10.101)
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After the partitions are removed, the gases will diffuse, and the partial Gibbs function of a particular gas
is the value of G, if that gas occupies the same volume at the same temperature exerting a partial pressure
Py Thus B

G,= RT X n(¢y +Inpy)
= RTZn (¢ +Inp+1Inxy)
Therefore
G,— G,= RT Xn Inx (10.102)
Since x; < 1, (G; — G,) is negative because G decreases due to diffusion. Gibbs function of a mixture of

ideal gases at T and p is thus 3
G=RTYn (¢y +Inp+Inxy) (10.103)

Solved Examb

Example 10.1

Two vessels, A and B, both containing nitrogen, are connected by a valve which is opened to allow the con-
tents to mix and achieve an equilibrium temperature of 27°C. Before mixing the following information is
known about the gases in the two vessels.

Vessel A Vessel B
p=15MPa p=0.6 MPa
t=50°C t=20°C

Contents = 0.5 kgmol  Contents = 2.5 kg
Calculate the final equilibrium pressure, and the amount of heat transferred to the surroundings. If the
vessel had been perfectly insulated, calculate the final temperature and pressure which would have been
reached. Take v = 1.4.

Solution For the gas in vessel 4 (Fig. Ex. 10.1)

PyVa=naR T, 1.5:APa O.G?APa
where V, is the volume of vessel 4 50°C 20°C
1.5 x 10° x ¥, = 0.5 x 8.3143 x 323 05 kg e P
V,=0.895m’
The mass of gas in vessel 4
My = Np Hp

. = 0.5 kg mol x 28 kg/kg mol = 14 kg
Characteristic gas constant R of nitrogen

_ 83143
28

R =0.297 kJ/kg K

For the vessel B
PV =my RTy

0.6 x 10° x ¥, =2.5 x 0.297 x 293
V, =0.363 m’
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Total volume of 4 and B
V=V,+Vy=0.895+0.363
=1.258m?

Total mass of gas
m=m, +my=14+25=165kg

Final temperature after mixing
T=27+273=300K
For the final condition after mixing
pV =mRT
where p is the final equilibrium pressure
p % 1.258 = 16.5 x 0.297 x 300
_ 16.5x0.297x300
1.258
= 1168.6 kPa
= 1.168 MPa
= R _ 0297
V=1 04
Since there is no work transfer, the amount of heat transfer

=0.743 Kkg K

O = change of internal energy
=U,- U,

| 263

Measuring the internal energy above the datum of absolute zero (at T=0K, u =0 kl/kg)

Initial internal energy U, (before mixing)
=m,c T, +mye Ty
= (14 x 323 + 2.5 x 293) x 0.743
=3904.1kJ
Final internal energy U, (after mixing)
=mc,T
= 16.5 x 0.743 x 300
=36779KkJ
Q=3677.9 —3904.1 = —226.2kJ

If the vessels were insulated
U =0,

m,c T, +myc Ty= mec, T

where T would have been the final temperature.
=" ala +mgly
m
_ 14x323+2.5%293

16.5
or t=45.5°C

=3185K

Ans.

Ans.
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The final pressure
mRT _ 16.5x0.297x318.5

14 1.258
= 1240.7 kPa

= 1.24 MPa

p:

Example 10.2

A certain gas has = 1.968 and c, = 1.507 kJ/kg K. Find its molecular weight and the gas constant.

A constant volume chamber of 0.3 m? capacity contains 2 kg of this gas at 5°C. Heat is transferred to the
gas until the temperature is 100°C. Find the work done, the heat transferred, and the changes in internal
energy, enthalpy and entropy.

Solution Gas constant,

R=c,—c, =1968 — 1507

=0461klkgK Ans.
Molecular weight, _
R 8.3143
=_ = = 18.04 kg/kg mol Ans.
: R 0.461 ghe

At constant volume
Q) _y=mc (t, —1)

=2 % 1.507 (100 - 5)

=280.33 kJ Ans.
Change in internal energy
2
w,_,= fpdv =0 Ans.
1
U,~U =0, ,=28633KkJ Ans.
Change in enthalpy -
H,—H = me, (t, — 1)
=2 x 1.968 (100 — 5) =373.92kJ Ans.
Change in entropy
T
S,— S, =me,In =2 =2 x 1507 In 313
T, 268
= 0.886 kJ/K Ans.

Example 10.3

(a) The specific heats of a gas are given by ¢, =a+ kT and c, = b + kT, where a, b, and k are constants
and T is in K. Show that for an isentropic expansion of this gas
Tt vo-b 4T = constant
(b) 1.5 kg of this gas occupying a volume 0f 0.06 m> at 5.6 MPa expands isentropically until the temperature
is 240°C. Ifa =0.946, b= 0.662, and k=107, calculate the work done in the expansion.
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Solution (a) cp—cv:a+kT~ b — kT
=a—b=R
dr dv

Now ds=c, — +R —
T v

o+ kDT - Y T L har+r@-n Y
T v T v
For an isentropic process
bin T + kT + (a — b) In v = constant
TP . va—b ekl — constant (QED)

(b) R=a—b=0946 — 0.662 = 0.284 ki/kg K
T, =240+ 273 = 513K
1= PV = 56x10° X006 _ 78573k _ 789K
mR  15x0284
TdS = dU + ¢ =0

T,
W, _,= —fmcvdT
Ty

=15 [7 (0.662 + 0.0001T) dT

513
= 1.5 [0.662 (789 — 513) + 10~4 x 0.5 {(789) — (513)2}]
— 1.5 (182.71 + 19.97)

=304 kJ Ans.

l Example 10.4

Show that for an ideal gas, the slope of the constant volume line on the T—s diagram is more than that of
the constant pressure line.

Solution We have, for 1 kg of ideal gas v=_C
Tds =du+pdv  =c, dT + pdv p=c
ory T
[EEJV Ta N
Also Tds=dh—vdp =c, dT — vdp
or T
(5, - A
Since c,>c,, Ev- > a

o (2]
Os v Os P

This is shown in Fig. Ex. 10.4. The slope of the constant volume line passing through point 4 is
steeper than that of the constant pressure line passing through the same point. (QE.D)



266 ' Basic and Applied Thermodynamics

I Example 10.5

0.5 kg of air is compressed reversibly and adiabatically from 80 kPa, 60°C to 0.4 MPa, and is then expanded
at constant pressure to the original volume. Sketch these processes on the p—v and T—s planes. Compute

the heat transfer and work transfer for the whole path.

Solution The processes have been shown on the p—v and T—s planes in Fig. Ex. 10.5. At state 1

pV,=mRT,
¥V, = volume of air at state 1
_ mRT, _ 1x0.287x333

p 2x80
Since the process 1—2 is reversible and adiabatic

= 0.597 m?

ZZ_ _ & (y=1)/v

T, by

T‘_2 _ {ﬂ](lA_l)“A _ (5)2/7
T 80

T, =333 x (5’ =527K
For process 12, work done

W= pVi—p)V, _ mR(T —-T))
1-27 -
v—1 -1
_ 1/2x0.287(333-527)
0.4
=—69.6kJ
Again v =p, 124
m| o 80 _ 1
v P> 00 5
V_2 _ 1 1/1.4 _ 1 B V2
v [E] 3162V,
v,= 9597 _ 0180 m’
3.162

For process 2—3, work done

W, ,=p,(V, - V,) =400 (0.597 — 0.189)

=163.2kJ
.". Total work transfer
W=W _,+ W,_;

=-—69.6+163.2=93.6kJ
For states 2 and 3
PV, _ P

T, T

Ans.
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y
T,=T, - =527 x 3.162 = 1667 K
4 :

5

Total heat transfer ,
0=0, ,+0, ;=0, ;= me, (T; = T,)
= 1/2 x 1.005 (1667 — 527)
= 527.85KkJ

| Example 10.6

! 267

Ans.

A mass of air is initially at 260°C and 700 kPa, and occupies 0.028 m>. The air is expanded at constant
pressure to 0.084 m*. 4 polytropic process with n = 1.50 is then carried out, followed by a constant temper-
ature process which completes a cycle. All the processes are reversible. (a) Sketch the cycle in the p—v and
T—s planes. (b) Find the heat received and heat rejected in the cycle. (c) Find the efficiency of the cvcle.

Solution

(a) The cycle is sketched on the p—v and T—s planes in Fig. Ex. 10.6.
Given p, =700kPa, T, = 260 + 273 =533 K =T,

V, =0.028 m?
V,=0.084 m?
From the ideal gas equation of state Iy
PV, =mRT, ]
0.287 x 533
Now T, _ p.V, _ 0.0084 _
T, AL 0.028 — vV
T,=3 x 533 = 1599 K @)
n/(n=1) 1505
Again £ _ | = [—1599J =3y =27
12 T, 533 -
Heat transfer in process 1—2 pvi®=C
0,.,= me, (T,-T)
=0.128 x 1.005 (1599 — 533)
=137.13KJ
Heat transfer in process 2—3
0, ,=AU+ [pdv —s
:m(‘v,(T3'“ Tz) '+‘ ——mR (TZ_T3) ] (b) ‘
y n—1 Fig. Ex. 106
I 4
=mc, L (I, -T,)
n—1

—0.128 x 0.718 x ]f;lii (533 — 1599)
5

=0.128 x 0.718 x % (— 1066) =—19.59kJ
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For process 3—1
dQ=dU+ ¢W= aw

1 V
=W, .= dV = mRT, In —-
Q3-/1 3-1 j; p 1 V3

=mRT,In 2 =0.128 x 0.287 x 533 In _]_]
Py 27
= —0.128 x 0.287 x 533 x 3.2959
= —64.53kJ
(b) Heat received in the cycle
Q,=137.13kJ
Heat rejected in the cycle
0, = 19.59 + 64.53 = 84.12kJ Ans.
(c) The efficiency of the cycle
M= 1 - 22 =1 312 g4
o) 137.13
=0.39, or 39% Ans.

| Example 10.7

A mass of 0.25 kg of an ideal gas has a pressure of 300 kPa, a temperature of 80°C, and a volume
of 0.07 m’. The gas undergoes an irreversible adiabatic process to a final pressure of 300 kPa and final
volume of 0.10 m3, during which the work done on the gas is 25 kJ. Evaluate the ¢, and c, of the gas and the
increase in entropy of the gas.
Solution From
pV, = mRT,
_ 300 x 0.07
0.25 x (273 + 80)

=0.238kl/kgK

Final temperature
=505K

r_ PYy _ _300x0.1
2 MR 025x0238

Now

O=U,-Up+W=mc(T,—7)+ W

0=025c, (505 — 353) — 25

e, = —2 __ —0658kikgK

0.25 x 152

Now c,— ¢ = R -

c, = 0.658 + 0.238 = 0.896 kJ/kg K
Entropy change

SWAS]:mcvlnp—2 + mc lnv—2
- P Py

v
—me In 22 =025 x 0.896 In 210
Yy 0.07

1
=0.224 x 0.3569 = 0.08 kJ/kg K Ans.
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Example 10.8

A mixture of ideal gases consists of 3 kg of nitrogen and 5 kg of carbondioxide at a pressure of 300 kPa and a
temperature of 20°C. Find (a) the mole fraction of each constituent, (b) the equivalent molecular weight of
the mixture, (c) the equivalent gas constant of the mixture, (d) the partial pressures and the partial volumes,
(e) the volume and density of the mixture, and ( ) the <, and c  of the mixture.
If the mixture is heated at constant volume to 40°C, find the changes in internal energy, enthalpy and
entropy of the mixture. Find the changes in internal energy, enthalpy and entropy of the mixture if the heating
is done at constant pressure. Take v for CO, and N, to be 1.286 and 1.4 respectively.

Solution  (a) Since mole fraction x, = :—‘
2 ni
3
x, = =28 —0.485
N i + i
28 44
2
— 44 -
J(CO2 =5 3 = 0.515 Ans.
- + —
28 44

(b) Equivalent molecular weight of the mixture
M=x p+x1
=0.485 x 28 + 0.515 x 44

= 36.25 kg/kg mol : Ans.

(¢) Total mass,
m=my +m., =3+5=28kg
2 2

Equivalent gas constant of the mixture

R = MR, +mco,Reo,

m
8.3143 8.3143
=g 40894094
8 8
=0.229 klkgK Ans.
(d Pn =Xy - p = 0.485 x 300 = 145.5 kPa
2 2
Peo. = Xco.- P = 0.515 x 300 = 154.5 kPa
2 2
me Ro T 3x 8318 593
Vg = —= N = — 28 _o87m
2 p 300
8.3143
Meo, Reo, T 3 14 x 293 3
Vep = —2—"2m = —————— =0.923 m’ Ans.

2 p 300
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(e) Total volume of the mixture
mRT my Ry T mcochozT

V= = =
p PNZ pCOZ
p= 8x0.229x293 _ | 59 s
300
Density of the mixture
p=p tp = = 8
N €O, 14 1.79
= 4.46 kg/m’
(f) CpN7 - CVN, = RN,.
Ry, 8.3143
N, T T T Se 14
> 41 28x(14-1)
=0.742 kJ/kg K
Con, = 1.4 % 0.742
= 1.039 kJ/kg K
For CO,, v =1286
R
e —Reo, _ 83143 6611k K

YO T 44%0.286
1.286 x 0.661 = 0.85 kl/kg K

o
]

For the mixture
- mN:CpNz + mCOZCpCO:

P my +meg,
=3/8 x 1.039 + 5/8 x 0.85 =0.92 kJ/kgK

_ MmN, CuN, T Mo, Cico,

m
= 3/8 x 0.742 4+ 5/8 x 0.661 = 0.69 ki/kg K
If the mixture is heated at constant volume
U,-U =mc (T,—T)
=8 x0.69 x (40 — 20) =110.4kJ
H, — H, :ch(T2 -T)
=8 x0.92 x 20=147.2kJ

T vV,
Sz—SI:mc In =% +mRIn -
Y 1 /)

313

T.
=mc,In == =8 x 0.69 x In =
7, 293

= 0.368 ki/kg K

Ans.

Ans.
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If the mixture is heated at constant pressure, AU and AH will remain the same. The change in
entropy will be T
S,— S, =mec In 2 —mRIn £2

p
| P

T
—me In -2 =8 x0921In 313
P 293

1
=049 klJ/kgK Ans.

| Example 10.9

Find the increase in entropy when 2 kg of oxygen at 60°C are mixed with 6 kg of nitrogen at the same
temperature. The initial pressure of each constituent is 103 kPa and is the same as that of the mixture.

Solution 2
o =20 = 32 _gs5
P 2.6
3228
x, = 2N = 0775
2P

Entropy increase due to diffusion

Po P
AS=—-m, R, In — —m_, R, In ==
o, fo, P N, TN, P
=2 8'3143] In0.225 -6 [8'3143] In0.775
=1.2314kJ/kgK Ans.

Example 10.10

The gas neon has a molecular weight of 20.183 and its critical temperature, pressure and volume are
44.5 K, 2.73 MPa and 0.0416 m*/kg mol. Reading from a compressibility chart for a reduced pressure of
2 and a reduced temperature of 1.3, the compressibility factor Z is 0.7. What are the corresponding specific
volume, pressure, temperature, and reduced volume?

Solution Atp =2and T = 1.3 from chart (Fig. Ex. 10.13),
z=10.7
p=2x273=546 MPa Ans.

T 3
TC

T=13x445=5785K Ans.
p,=ZRT

L — 0.7x83143x57.85
20.183x5.46 x10°

=3.05 x 103 m’/kg Fig. Bx. 1040
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v = Y - 3.05x107x20.183

G 4.16x1072
=148 Ans.
Example 10.11
For the Berthelot equation of state
__RT _a
lim v
show that (a) ,—0 (RT—pv)=0
T -
®) limY =R
T—oo T p
(c) Boyle temperature, T, = fi,
bR
(d) Critical properties P, = L }%aﬁ V. =3bT, = 8“1
126 ¥ 3b 27bR"
(e) Law of corresponding states
3
p, + Bv,— 1) =8T,
T, - vr2
. RT a
Solution (a) p=7 P
RT=|p+-2| (v-b)
77
RT a ab
or —_— =V —— — b — >
p pvT VT
b
RT —pv= 2 — bp — a2
vT viT
lim
p—0 (RT — =0 Proved (a)
T—ox
(b) Now v BT _a a127
P T pv'T
v o 5_ d 2 ab
? p vaZ T pv2T2
. R
lim — = — Proved (b)
T—oc T P
(© pv:RT—i +bp+_a£

vl VT
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The last three terms of the equation are very small, except at very high pressures and small
volume. Hence substituting v = RT/p

Properties of Gases and Gas Mixtures

ap abp?
v=RT - —— +bp+ 2
p RT? P RT?

0

| _ @ pi 20 g
o it RT R’T
when p = 0, T = T}, the Boyle temperature
a ua—
RTg
or T, = /i Proved (c)
bR
RT a
(d) p= -—
v—b TV

Op RT, 2a

5, =TT 7 =0

ov T=T, (VC - b) ]:: Ve

o*p _ _2RT,  6a _

avz T=T, - (vc‘b)3 chj -

a
p.+—| (v. — b) =RT,
Tov,

By solving the three equations, as was done in the case of van der Waals equation of state in

Article 10.7

po= 2 |29R \ —3bandT,= |22 Proved (d)

126\ 3b 27bR

(e) Solving the above three equations

3 2
a=8YPi =3p V2 T,
R
poYe r= 3P (thatz = 3/8)
3 3T

Substituting in the equation

a
+-2 | wv=b)=RT
[p Tvz]

2 8
pPe¥ele |, Ye| _ SPe¥e g
v 3 3T,

3 :
pr+T - Bv,— 1) =81,

This is the law of corresponding states. Proved (e)
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Review Questions

What is a mole?
What is Avogadro’s law?
What is an equation of state?

What is the fundamental property of gases with
respect to the product pv?

What is universal gas constant?

Define an ideal gas.

What is the characteristic gas constant?
What is Boltzmann constant?

Why do the specific heats of an ideal gas depend
only on the atomic structure of the gas?

Show that for an ideal gas the internal energy
depends only on its temperature.

Show that the enthalpy of an ideal gas is a func-
tion of temperature only.

Why is there no temperature change when an
ideal gas is throttled?

Show that for an ideal gas, e, = R.

Derive the equations used for computing the
entropy change of an ideal gas.

Show that for a reversible adiabatic process exe-

cuted by an ideal gas, the following relations hold

goed: (i) pv* = constant, (ii) 7v" ~ ! = constant,
-

and (iii) Tp °

Express the changes in internal energy and

enthalpy of an ideal gas in a reversible adiabatic

process in terms of the pressure ratio.

= constant.

Derive the expression of work transfer for an
ideal gas in a reversible isothermal process.

What is a polytropic process? What are the rela-
tions among p, v and T of an ideal gas in a poly-
tropic process?

Show that the entropy change between states 1
and 2 in a polytropic process, pv" = constant, is
given by the following relations:

- T
(i) s, -5=———  Rln=2
- (y=D(n—-1 T,
. n—- P,
(i) s,—s,= ——— Rln =%
20T oy =1 P
(i) s,—s,=— 22 pm 2

v—1 Vi
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What are the expressions of work transfer for
an ideal gas in a polytropic process, if the gas
Is: (i) a closed system, and (ii) a steady flow
system?

Derive the expression of heat transfer for an ideal
gas in a polytropic process. What is the polytropic
specific heat? What would be the direction of heat
transfer if (a) n > ~, and (b) n < ~v?

Why is the external work supplied to a compres-

sor equal to — v dp?
2

Write down the van der Waals equation of state.
How does it differ from the ideal gas equation
of state. What is the force of cohesion? What is
co-volume?

What are the two-constant equations of state?

Give the virial expansions for pv in terms of p
and v.

What are virial coefficients? When do they
become zero?

What is the compressibility factor?

What are reduced properties?

What is the generalized compressibility chart?
What is the law of corresponding states?

Express the van der Waals constants in terms of
critical properties.

Draw the diagram representing the law of corre-
sponding states in reduced coordinates indicating
the isotherms and the liquid and vapour phases.

Define Boyle temperature? How is it computed?
State Dalton’s law of partial pressures.

How is the partial pressure in a gas mixture
related to the mole fraction?

How are the characteristic gas constant and the
molecular weight of a gas mixture computed?

What is Gibb’s theorem?

Show that in a diffusion process a gas undergoes
a free expansion from the total pressure to the rel-
evant partial pressure.

Show that in a diffusion process at constant tem-

perature the entropy increases and the Gibbs
function decreases.
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Problems

What is the mass of air contained in a room 6 m
x 9 m X 4 m if the pressure is 101.325 kPa and
the temperature is 25°C? Ans. 256 kg

The usual cooking gas (mostly methane) cylinder
is about 25 cm in diameter and 80 cm in height. It
is charged to 12 MPa at room temperature (27°C).
(a) Assuming the ideal gas law, find the mass of
gas filled in the cylinder. (b) Explain how the
actual cylinder contains nearly 15 kg of gas. (c)
If the cylinder is to be protected against excessive
pressure by means of a fusible plug, at what tem-
perature should the plug melt to limit the maxi-
mum pressure to 15 MPa?

A certain gas has ¢ = 0.913 and ¢, = 0.653 kl/kg
K. Find the molecular weight and the gas constant
R of the gas.

From an experimental determination the specific
heat ratio for acetylene (C,H,) is found to 1.26.
Find the two specific heats.

Find the molal specific heats of monatomic,
diatomic, and polyatomic gases, if their specific
heat ratios are respectively 5/3, 7/5 and 4/3.

A supply of natural gas is required on a site 800 m
above storage level. The gas at — 150°C, 1.1 bar
from storage is pumped steadily to a point on the
site where its pressure is 1.2 bar, its temperature
15°C, and its flow rate 1000 m*hr. If the work
transfer to the gas at the pump is 15 kW, find the
heat transfer to the gas between the two points.
Neglect the change in K.E. and assume that the
gas has the properties of methane (CH,) which
may be treated as an ideal gas having v = 1.33
(g =9.75 m/s?). Ans. 63.9 kW

A constant volume chamber of 0.3 m? capacity
contains 1 kg of air at 5°C. Heat is transferred to
the air until the temperature is 100°C. Find the
work done, the heat transferred, and the changes
in internal energy, enthalpy and entropy.

One kg of air in a closed system, initially at 5°C
and occupying 0.3 m® volume, undergoes a con-
stant pressure heating process to 100°C. There is
no work other than pdv work. Find (a) the work
done during the process, (b) the heat transferred,
and (c) the entropy change of the gas.

0.1 m? of hydrogen initially at 1.2 MPa, 200°C
undergoes a reversible isothermal expansion to
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0.1 MPa. Find (a) the work done during the pro-
cess, (b) the heat transferred, and (c) the entropy
change of the gas.

Air in a closed stationary system expands in a
reversible adiabatic process from 0.5 MPa, 15°C
to 0.2 MPa. Find the final temperature, and per kg
of air, the change in enthalpy, the heat transferred,
and the work done.

If the above process occurs in an open steady flow
system, find the final temperaturc, and per kg of
air, the change in internal energy, the beat trans-
ferred, and the shaft work. Neglect velocity and
elevation changes.

The indicator diagram for a certain water-cooled
cylinder and piston air compressor shows that
during compression pv!'* = constant. The com-
pression starts at 100 kPa, 25°C and ends at 600
kPa. If the process is reversible, how much heat is
transferred per kg of air?

An ideal gas of molecular weight 30 and
= 1.3 occupies a volume of 1.5 m* at 100 kPa and
77°C. The gas is compressed according to the law
pv'?® = constant to a pressure of 3 MPa. Calculate
the volume and temperature at the end of com-
pression and heating, work done, heat transferred,
and the total change of entropy.

Calculate the change of entropy when 1 kg of
air changes from a temperature of 330 K and
a volume of 0.15 m? to a temperature of 550
K and a volume of 0.6 m’. If the air expands
according to the law, pv" = constant, between
the same end states, calculate the heat given to,
or extracted from, the air during the expansion,
and show that it is approximately equal to the
change of entropy multiplied by the mean abso-
lute temperature.

0.5 kg of air, initially at 25°C, is heated reversibly
at constant pressure until the volume is doubled,
and is then heated reversibly at constant volume
until the pressure is doubled. For the total path,
find the work transfer, the heat transfer, and the
change of entropy.

An ideal gas cycle of three processes uses Argon
(Mol. wt. 40) as a working substance. Process | —2
is a reversible adiabatic expansion from 0.014 m®,
700 kPa, 280°C to 0.056 m’. Process 2—3 is a
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reversible isothermal process. Process 3—1 is a
constant pressure process in which heat transfer is
zero. Sketch the cycle in the p-v and T-s planes,
and find (a) the work transfer in process 1-2, (b)
the work transfer in process 2—3, and (c) the net
work of the cycle. Take v = 1.67.

Ans. (a) 8.85kJ (b) 8.96KkJ (c) 5.82kJ

A gas occupies 0.024m? at 700 kPa and 95°C. It is
expanded in the non-flow process according to the
law pv!2 = constant to a pressure of 70 kPa after
which it is heated at constant pressure back to its
original temperature. Sketch the process on the
p-vand T-s diagrams, and calculate for the whole
process the work done, the heat transferred, and
the change of entropy. Take ¢, = 1.047 and
¢, = 0.775 kJ/kg K for the gas.

0.5 kg of air at 600 kPa receives an addition of
heat at constant volume so that its temperature
rises from 110°C to 650°C. It then expands in a
cylinder polytropically to its original temperature
and the index of expansion is 1.32. Finally, it is
compressed isothermally to its original volume.
Calculate (a) the change of entropy during each
of the three stages, (b) the pressures at the end of
constant volume heat addition and at the end of
expansion. Sketch the processes on the p-v and
T-s diagrams.

0.5 kg of helium and 0.5 kg of nitrogen are mixed
at 20°C and at a total pressure of 100 kPa. Find
(a) the volume of the mixture, (b) the partial vol-
umes of the components, (c) the partial pressures
of the components, (d) the mole fractions of the
components, (e) the specific heats ¢ ) and ¢, of the
mixture, and (f) the gas constant of the mixture.
Ans. (a) 3.481 m? (b) 3.045, 0.436 m?
(c) 87.5, 12.5 kPa (d) 0.875, 0.125
(e)3.11, 1.921 kJ/k (f) 1.189 kJ/kgK.
A gaseous mixture consists of 1 kg of oxygen and
2 kg of nitrogen at a pressure of 150 kPa and a
temperature of 20°C. Determine the changes in
internal energy, enthalpy and entropy of the mix-
ture when the mixture is heated to a temperature
of 100°C (a) at constant volume, and (b) at con-
stant pressure.

A closed rigid cylinder is divided by a diaphragm
into two equal compartments, each of volume 0.1
m?. Each compartment contains air at a tempera-
ture of 20°C. The pressure in one compartment is
2.5 MPa and in the other compartment is | MPa.
The diaphragm is ruptured so that the air in both
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the compartments mixes to bring the pressure to
a uniform value throughout the cylinder which is
insulated. Find the net change of entropy for the
mixing process.

A vessel is divided into three compartments (a),
(b), and (c) by two partitions. Part (a) contains
oxygen and has a volume of 0.1 m? (b) has a
volume of 0.2 m? and contains nitrogen, while (c)
is 0.05 m? and holds CO,. All three parts are at a
pressure of 2 bar and a temperature of 13°C. When
the partitions are removed and the gases mix,
determine the change of entropy of each constitu-
ent, the final pressure in the vessel and the partial
pressure of each gas. The vessel may be taken as
being completely isolated fruin its surroundings.
Ans. 0.0875, 0.0783, 0.0680 kJ/K; 2 bar;
0.5714, 1.1329, 0.2857 bar.

A Carnot cycle uses 1 kg of air as the working
fluid. The maximum and minimum temperatures
of the cycle are 600 K and 300 K. The maximum
pressure of the cycle is 1 MPa and the volume
of the gas doubles during the isothermal heating
process. Show by calculation of net work and
heat supplied that the efficiency is the maximum
possible for the given maximum and minimum
temperatures.

An ideal gas cycle consists of three reversible
processes in the following sequence: (a) constant
volume pressure rise, (b) isentropic expansion to
r times the initial volume, and (c) constant pres-
sure decrease in volume. Sketch the cycle on the
p-v and T-s diagrams. Show that the efficiency of
the cycle is

r’—1—(r-1)

r’ —1

Evaluate the cycle efficiency when v = % and

77t:ycle =

r=38. Ans. (n=0.378)
Using the Dieterici equation of state

_ RT_ [_ a ]
P P TR
(a) Show that
a a
= — Y = I = ——
Pe™ ™ =7 4Rb
(b) expand in the form
pv:RT(l+£+£2—+.,.]
v v

¢) showthatT, = %
(© ® bR



10.26

10.27

10.28

10.29

10.30

10.31

The number of moles, the pressures, and the tem-
peratures of gases a, b, and ¢ are given below as
follows

Gas m (kg mol) p (kPa) t(°C)
N, 1 350 100
CO 3 420 200
o 2 700 300

If the containers are connected, allowing the gases
to mix freely, find (a) the pressure and tempera-
ture of the resulting mixture at equilibrium, and
(b) the change of entropy of each constituent and
that of the mixture.

Calculate the volume of 2.5 kg moles of steam at
236.4 atm. and 776.76 K with the help of com-
pressibility factor versus reduced pressure graph.
At this volume and the given pressure, what
would the temperature be in K, if steam behaved
like a van der Waals gas?

The critical pressure, volume, and temperature of
steam are 218.2 atm, 57 cm?/g mole, and 647.3 K
respectively.

Two vessels, 4 and B, each of volume 3 m* may
be connected together by a tube of negligible
volume. Vessel 4 contains air at 7 bar, 95°C while
B contains air at 3.5 bar, 205°C. Find the change
of entropy when 4 is connected to B. Assume the
mixing to be complete and adiabatic.

Ans. (0.975 kJ/kg K)

An ideal gas at temperature 7| is heated at con-
stant pressure to T, and then expanded reversibly,
according to the law pv" = constant, until the
temperature is once again 7,. What is the required
value of n, if the changes of entropy during the
separate processes are equal? 2+
v+l
A certain mass of sulphur dioxide (SO,) is con-
tained in a vessel of 0.142 m? capacity, at a pres-
sure and temperature of 23.1 bar and 18°C respec-
tively. A valve is opened momentarily and the
pressure falls immediately to 6.9 bar. Sometime
later the temperature is again 18°C and the pres-
sure is observed to be 9.1 bar. Estimate the value
of specific heat ratio. Ans. 1.29

A gaseous mixture contains 21% by volume of
nitrogen, 50% by volume of hydrogen. and 29%

Ans. [n =
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by volume of carbon-dioxide. Calculate the
molecular weight of the mixture, the character-
istic gas constant R for the mixture and the value
of the reversible adiabatic index ~. (At 10°C,
the ¢_ values of nitrogen, hydrogen, and carbon
dioxide are 1.039, 14.235, and 0.828 kJ/kg K
respectively.)

A cylinder contains 0.085 m® of the mixture at
1 bar and 10°C. The gas undergoes a reversible
non-flow process during which its volume is
reduced to one-fifth of its original value. If the Jaw
of compression is pv'? = constant, determine the
work and heat transfers in magnitude and sense
and the change in entropy.
Ans. 19.64 kg/kg mol, 0.423 kl/kg K,

1.365, — 16 kJ, — 7.24 kJ, — 0.31 kJ/kg K
Two moles of an ideal gas at temperature T and
pressure p are contained in a compartment. In an
adjacent compartment is one mole of an ideal gas
at temperature 27 and pressure p. The gases mix
adiabatically but do not react chemically when
a partition separating the compartments is with-
drawn. Show that the entropy increase due to the
mixing process is given by

R [ln 7,0 2
4 -1 27

provided that the gases are different and that the
ratio of specific heat -y is the same for both gases
and remains constant.
What would the entropy change be, if the mixing
gases were of the same species?

n, moles of an ideal gas at pressure p, and tem-
perature T are in one compartment of an insulated
container. In an adjoining compartment, sepa-
rated by a partition, are n, moles of an ideal gas at
pressure p, and temperature 7. When the partition
is removed, calculate (a) the final pressure of the
mixture, (b) the entropy change when the gases
are identical, and (c) the entropy change when the
gasesare different. Prove that the entropy change in
(c) is the same as that produced by two indepen-
dent free expansions.

Assume that 20 kg of steam are required at a pres-
sure of 600 bar and a temperature of 750°C in
order to conduct a particular experiment. A 140-
litre heavy duty tank is available for storage.

Predict if this is an adequate storage capacity using:

(a) the ideal gas theory,
(b) the compressibility factor chart,
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(c) the van der Waals equation with ¢ = 5.454
(litre)? atm/(g mol)?, b = 0.03042 litres/g mol
for steam,

(d) the Mollier chart

(e) the steam tables.

Estimate the error in each.
Ans. (a) 157.751, (b) 132.51, (c) 124.94/,
(d) 137.291

Estimate the pressure of 5 kg of CO, gas which
occupies a volume of 0.70 m3 at 75°C, using the
Beattie-Bridgeman equation of state.

Compare this result with the value obtained using
the generalized compressibility chart. Which is
more accurate and why?

For CO, with units of atm, litres/g mol and K,
A, = 5.0065, a = 0.07132, B, = 0.10476, b =
0.07235, C x 1074 = 66.0.

Measurements of pressure and temperature at
various stages in an adiabatic air turbine show
that the states of air lie on the line pv'?> = con-
stant. If kinetic and gravitational potential energy
are neglected, prove that the shaft work per kg as
a function of pressure is given by the following

relation
i/5
b
Take -y for air as 1.4.

Air flows steadily into a compressor at a tem-
perature of 17°C and a pressure of 1.05 bar and
leaves at a temperature of 247°C and a pressure
of 6.3 bar. There is no heat transfer to or from the
air as it flows through the compressor; changes
in elevation and velocity are negligible. Evaluate
the external work done per kg of air, assuming air
as an ideal gas for which R = 0.287 kJ/kg K and
v = 1.4. Evaluate the minimum external work
required to compress the air adiabatically from
the same initial state to the same final pressure
and the isentropic efficiency of the compressor.

Ans. — 225kJ/kg, — 190kJ/kg, 84.4%

A slow-speed reciprocating air compressor with
a water jacket for cooling approximates a quasi-
static compression process following a path pv!3
= const. If air enters at a temperature of 20°C and
a pressure of 1 bar, and is compressed to 6 bar at
a rate of 1000 kg/h, determine the discharge tem-

W=235pv,
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perature of air, the power required and the heat
transferred per kg.Ans. 443k, 51.82 kW, 36 ki/kg
A single-acting two-stage reciprocating air compres-
sor with complete intercooling delivers 6 kg/min at
15 bar pressure. Assume an intake condition of 1 bar
and 15°C and that the compression and expansion
processes are polytropic with n = 1.3. Calculate:
(a) the power required, (b) the isothermal efficiency.

Ans. (a) 26.15 kW (b) 85.6%

A two-stage air compressor receives 0.238 m’/s
of air at 1 bar and 27°C and discharges it at 10 bar.
The polytropic index of compression is 1.35.
Determine (a) the minimum power necessary for
compression, (b) the power needed for single-
stage compression to the same pressure, (c) the
maximum temperature for (a) and (b), and (d) the
heat removed in the intercooler. Ans. (a) 63.8 kW,
(b) 74.9 kW, (c) 404.2 k, 544.9 k, (d) 28.9 kW

A mass of an ideal gas exists initially at a pres-
sure of 200 kPa, temperature 300 K, and spe-
cific volume 0.5 m*kg. The value of v is 1.4. (a)
Determine the specific heats of the gas. (b) What
is the change in entropy when the gas is expanded
to pressure 100 kPa according to the law pv'?
= const? (c) What will be the entropy change if
the path is pv!* = const. (by the application of a
cooling jacket during the process)? (d) What is
the inference you can draw from this example?
Ans. (a) 1.166, 0.833 kJ/kg K, (b) 0.044 kJ/kg K
(c) — 0.039 kJ/kg K (d) Entropy increases when n
< -y and decreases when n > ~

(@) A closed system of 2 kg of air initially at pres-
sure 5 atm and temperature 227°C, expands
reversibly to pressure 2 atm following the law
pv'?5 = const. Assuming air as an ideal gas,
determine the work done and the heat trans-
ferred. Ans. 193 k], 72 kJ

(b) If the system does the same expansion in a
steady flow process,what is the work done
by the system? Ans. 241 kJ

Air contained in a cylinder fitted with a piston
is compressed reversibly according to the law
pv'® = const. Themassofairinthecylinderis0.1kg.
The initial pressure is 100 kPa and the initial
temperature 20°C. The final volume is 1/8 of the
initial volume. Determine the work and the heat
transfer. Ans. —229KkJ, — 8.7kl
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Air is contained in a cylinder fitted with a fric-
tionless piston. Initially the cylinder contains
0.5 m3 of air at 1.5 bar, 20°C. The air is then
compressed reversibly according to the law pv' =
constant until the final pressure is 6 bar, at which
point the temperature is 120°C. Determine: (a) the
polytropic index n, (b) the final volume of air, (c)
the work done on the air and the heat transfer, and

(d) the net change in entropy.
Ans. (a) 1.2685, (b) 0.1676 m> (c) — 95.3 kJ,
—31.5kJ, (d) 0.0153 kI/K

The specific heat at constant pressure for air is
given by
¢, =0.9169 + 2.577 x 104T —3.974 x 1078
T?kJ/kgK
Determine the change in internal energy and that in
entropyofairwhenitundergoesachangeofstatefrom
1 atm and 298 K to a temperature of 2000 K at
the same pressure.
Ans. 1470.4 kJ/kg, 2.1065 ki/kg K

A closed system allows nitrogen to expand
reversibly from a volume of 0.25 m? to 0.75 m®
along the path pv'32 = const. The original pres-
sure of the gas is 250 kPa and its initial tempera-
ture is 100°C. (a) Draw the p-v and T-s diagrams.
(b)What are the final temperature and the final
pressure of the gas? (c) How much work is done
and how much heat is transferred? (d) What is the
entropy change of nitrogen?
Ans. (b) 262.44 K, 58.63 kPa,
(c) 57.89kJ, 11.4 kJ, (d) 0.0362 kI/K

Methane has a specific heat at constant pres-
sure given by = 17.66 + 0.06188 T kJ/kg mol
K when 1 kg of methane is heated at constant
volume from 27 to 500°C. If the initial pressure
of the gas is 1 atm, calculate the final pressure,
the heat transfer, the work done and the change in
entropy.

Ans. 2.577 atm, 1258.5 kl/kg, 0, 2.3838 k)/kg K

Air is compressed reversibly according to the law
pv''¥ = const. from an initial pressure of 1 bar
and volume of 0.9 m? to a final volume of 0.6 m>.
Determine the final pressure and the change of
entropy per kg of air.

Ans. 1.66 bar, — 0.0436 kJ’kg K
In a heat engine cycle, air is isothermally com-
pressed. Heat is then added at constant pressure,
after which the air expands isentropically to its
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original state. Draw the cycle on p-v and T-s
coordinates. Show that the cycle efficiency can
be expressed in the following form

Properties of Gases and Gas Mixtures

(y—Dlnr

=1-
T Ao

where r is the pressure ratio, p,/p,. Determine the
pressure ratio and the cycle efficiency if the ini-
tial temperature is 27°C and the maximum tem-
perature is 327°C. Ans. 13.4,32.4%

What is the minimum amount of work required to
separate 1 mole of air at 27°C and 1 atm pressure
(assumed composed of 1/5 O, and 4/5 N,) into
oxygen and nitrogen each at 27°C and 1 atm pres-
sure? Ans. 1250)

A closed adiabatic cylinder of volume 1 m® is
divided by a partition into two compartments 1
and 2. Compartment 1 has a volume of 0.6 m®
and contains methane at 0.4 MPa, 40°C, while
compartment 2 has a volume of 0.4 m* and con-
tains propane at 0.4 MPa, 40°C. The partition is
removed and the gases are allowed to mix. (a)
When the equilibrium state is reached, find the
entropy change of the universe. (b) What are the
molecular weight and the specific heat ratio of
the mixture?

The mixture is now compressed reversibly and
adiabatically to 1.2 MPa. Compute (c) the final
temperature of the mixture, (d) the work required
per unit mass, and (e) the specific entropy change
for each gas. Take <, of methane and propane as
35.72 and 74.56 kJ/kg mol K respectively.
Ans. (a) 0.8609 kJ/K, (b) 27.2, 1.193
(c) 100.9°C, (d) 396 kJ, (¢) 0.255 kJ/’kg K

An ideal gas cycle consists of the following revers-
ible processes: (i) isentropic compression, (ii) con-
stant volume heat addition, (iii) isentropic expan-
sion, and (iv) constant pressure heat rejection.
Show that the efficiency of this cycle is given by

1 [y@" - 1)]

n= ] — —
rk""1 a—1

where #, is the compression ratio and a is the ratio
of pressures after and before heat addition.

An engine operating on the above cycle with a
compression ratio of 6 starts the compression with
air at 1 bar, 300 K. If the ratio of pressures after and
before heat addition is 2.5, calculate the efficiency
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and the m.e.p. of the cycle. Take y = 1.4 and c,=
0.718 kJ/kg K. Ans. 0.579, 2.5322 bar

The relation between v, p and v for many gases
is of the form ¥ = a + bpv where a and b are
constants. Show that for a reversible adiabatic
process pv” = constant, where y = (b + 1)/b.

(a) Show that the slope of a reversible adiabatic
process on p-v coordinates is

dp _ 1g 1[av]
T

= —— = wherek= ——| —
Op

dv kv ¢ v
(b) Hence, show that for an ideal gas, pv’ =
constant, for a reversible adiabatic process.

v

A certain gas obeys the Clausius equation of state
p (v — b) = RT and has its internal energy given
by u = ¢, T. Show that the equation for a revers-
ible adiabatic process is p (v — b)" = constant,
where v = cle,

(a) Two curves, one representing a reversible
adiabatic process undergone by an ideal gas and
the other an isothermal process by the same gas,
intersect at the same point on the p-v diagram.
Show that the ratio of the slope of the adiabatic
curve to the slope of the isothermal curve is equal
to . (b) Determine the ratio of work done during
a reversible adiabatic process to the work done
during an isothermal process for a gas having
v = 1.6. Both processes have a pressure ratio of 6.

Two containers p and g with rigid walls contain
two different monatomic gases with masses m
and m,, gas constants Rp and Rq, and initail tem-
peratures Tp and T o respectively, are brought in
contact with each other and allowed to exchange
energy until equilibrium is achieved. Determine:
(a) the final temperature of the two gases and
(b) the change of ¢éntropy due to this energy
exchange.

The pressure of a certain gas (photon gas) is a
function of temperature only and is related to
the energy and volume by p(T) = (1/3) (UV).
A system consisting of this gas confined by a
cylinder and a piston undergoes a Carnot cycle
between two pressures p, and P,- (a) Find expres-
sions for work and heat of reversible isothermal
and adiabatic processes. (b) Plot the Carnot cycle
on p-v and T-s diagrams. (c) Determine the effi-
ciency of the cycle in terms of pressures. (d)
What is the functional relation between pressure
and temperature?
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The gravimetric analysis of dry air is approxi-
mately: oxygen = 23%, nitrogen = 77%. Calculate:
(2) the volumetric analysis, (b) the gas constant,
(c) the molecular weight, (d) the respective partial
pressures, (e) the specific volume at 1 atm, 15°C,
and (f) How much oxygen must be added to 2.3 kg
air to produce a mixture which is 50% oxygen by
volume?

Ans. (a)21% O,, 79% N,, (b) 0.288 kJ/kg K,

(d) 21 kPa for O,, (¢) 0.84 m’/kg, (f) 1.47 kg

A vessel of volume 2V is divided into two equal
compartments. These are filled with the same
ideal gas, the temperature and pressure on one
side of the partition being (p,, 7,) and on the other
(p,, T,). Show that if the gases on the two sides are
allowed to mix slowly with no heat entering, the
final pressure and temperature will be given by
p=P1%P p_ T, +p))
2 s +p,T,

Further, show that the entropy gain is

[C—"H—p—‘ln£+p—zlnl]—~ﬂln£—p—zln£—
R\ 5,7, T, e T, s

An ideal gas with a constant volume of c, =
29.6 J/gmol-K is made to undergo a cycle con-
sisting of the following reversible processes in a
closed system:
Process 1—2: The gas expands adiabatically from
5 MPa, 550 K to 1 MPa;
Process 2—3: The gas is heated at constant volume
until 550 K;
Process 3—1: The gas is compressed isothermally
back to its initial condition.
Calculate the work, the heat and the change of
entropy of the gas for each of the three processes.
Draw the p-v and T-s diagrams.
Ans. W, _,=42601J/gmol, Q, _,=0,As, ,
=0,W, ;=0,0, ,=4260J/gmol, As, ,
=9.62 Vgmol-K, W, _, = — 5290 J/mol
=0, ,,As, | =—9.62J/gmol-K,

Wne - Qnet= - 1030 Jg/gm()l’ §dS= 0.

Air in a closed system expands reversibly and
adiabatically from 3 MPa. 200°C to two times its
initial volume, and then cools at constant volume
until the pressure drops to 0.8 MPa. Calculate the
work done and heat transferred per kg of air. Use
¢, = 1.017 and ¢, = 0.728 kJ/kgK.

Ans:82.7 K)/kg, — 78.1 k/kg
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A vessel is divided into three compartments (a),
(b) and (c) by two partitions. Part (a) contains
hydrogen and has a volume of 0.1 m®, part (b)
contains nitrogen and has a volume of 0.2 m® and
part (c) contains carbon dioxide and has a volume
of 0.05 m>. All the three parts are at a pressure
of 2 bar and a temperature of 13°C. The parti-
tions are removed and the gases are allowed to
mix. Determine (a) the molecular weight of the
mixture, (b) the characteristics gas constant for
the mixture, (c) the partial pressures of each gas,
(d) the reversible adiabatic index -, and (e) the
entropy change due to diffusion. The specific
heats of hydrogen, nitrogen and carbon dioxide are
14.235, 1.039 and 0.828 kJ/kg K respectively.
The above gas mixture is then reversibly com-
pressed to a pressure of 6 bar according to the law
pv'? = constant, (f) Determine the work and heat
interactions in magnitude and sense, and (g) the
change in entropy.
Ans. (a) 22.8582 (b) 0.3637 kV/kg K (¢} py
= 0.5714, py, = 1.1428, p,, = 0.2858 bar «
1.384 (e) 0.3476 kl/kgK (f) — 70.455 kI, —
33.772 kJ (g) — 0.1063 kJ/K.
A four cylinder single-stage air compressor has a
bore of 200 mm and a stroke of 300 mm and runs
at 400 rpm. At a working pressure of 721.3 kPa it
delivers 3.1 m? of air per min at 270°C. Calculate
(a) the mass flow rate, (b) the free air delivery
(FAD) (c) effective swept volume, (d) volumetric
efficiency. Take the inlet condition as that of the
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free air at 101.3 kPa, 21°C.  Ans. (a) 0.239 kg/s
(b) 0.199 m?¥s (c) 0.299 m?, (d) 79.2%

Predict the pressure of nitrogen gas at 7= 175K
and v = 0.00375 m%kg on the basis of (a) the
ideal gas equation of state, (b) the van der Waals
equation of state, (c) the Beattie-Bridgeman equa-
tion of state and (d) the Benedict-Webb-Rubin
equation of state. Compare the values obtained
with the experimentally determined value of
10,000 kPa. Ans. (a) 13,860 kPa (b) 9468 kPa (c)
10,110 kPa (d) 10,000 kPa

The pressure in an automobile tyre depends on
the temperature of the air in the tyre. When the
air temperature is 25°C, the pressure gauge reads
210 kPa. If the volume of the tyre is 0.025 m>,
determine the pressure rise in the tyre when the
air temperature in the tyre rises to 50°C. Also find
the amount of air that must be bled off te restore
pressure to its original value at this temperature.
Take atmospheric pressure as 100 kPa.

Properties of Gases and Gas Mixtures

Two tanks are connected by a valve. One tank
contains 2 kg of CO gas at 77°C and 0.7 bar. The
other tank holds 8 kg of the same gas at 27°C
and 1.2 bar. The valve is opened and the gases
are allowed to mix while receiving energy by heat
transfer from the surroundings. The final equi-
librium temperature is 42°C. Using the ideal gas
model, determine (a) the final equilibrium pres-
sure, (b) the heat transfer for the process.

Ans. (a) 1.05 bar (b) 37.25 kJ
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11.1 1 SOME MATHEMATICAL THEOREMS

Theorem 1 If a relation exists among the variables x, y, and z, then z may be expressed as a function of x

and y, or
’ 0z 0z
dz=|—| de+ || d
[ Ox ]y [3y ] g
0z 0z
If | =M, and || =N
ox), dy ),
then dz=Mdx+ Ndy,
where z, M and N are functions of x and y. Differentiating M partially with respect to y, and N with respect to x
oM ] _ 0%
9 ),  0Ox- Jy
6_N] _ o
Ox y Oy-Ox
‘?—A{] = [QJXJ (11.1)
oy ). Ox

This is the condition of exact (or perfect) differential.

Theorem 2  If a quantity fis a function of x, y, and z, and a relation exists among x, y and z, then fis a func-
tion of any two of x, y, and z. Similarly, any one of x, y, and z may be regarded to be a function of fand any
one of x, y, and z. Thus, if

x=x(£y)
Ox Ox
o]
of y oy )
Similarly, if y=xf2)
dy Oy
dy=1—| d ——| dz
’ {3sz ' [a]
Substituting the expression of dy in the preceding equation
Ox Ox | |[dy Jy Ox Ox| [0y Ox| |8y
de=|==| &f +|—| |=] d&f +|=]| dz|=||= —| 1= |df +|=—| | =| dz
R R A o R R

Ox Ox
Agai dx=|—=| d —| dz
s [af ]z y* [52 ]f
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Oz J, Oy ); \ 0z ¢

[Qi [?_y_] [QZ_] =1 (11.2)
ay ¢ oz B Ox ¢

\

Theorem 3 Among the variables x, y, and z, any one variable may be considered as a function of the other

two. Thus
x =x(y, z)

dx = O_x dy+[g,£] dz
oy}, 0z ),

[az

=1l 4
8y]x g

5] o[, 0
ox
y x
x| |0z
¥ {EJ [a] *
y y

dy + dx

Similarly, dz = 2z—] dx +
Ox y

Ox Ox
Zloay +12
oy ] i’ [32 ],

oA
] +15) (5],
&) 1] 5]

x| 2z) |dy| __
or [By]z[ax]y[az]x =-1 (11.3)

Among the thermodynamic variables p, V and T, the following relation holds good
[QIL] [B_V] [B_T] -1
ov T \or b op),

11.2 MAXWELLS EQUATIONS

A pure substance existing in a single phase has only two independent variables. Of the eight quantities p, V,
T, 8, U, H, F (Helmholtz function), and G (Gibbs function) any one may be expressed as a function of any

two others.
For a pure substance undergoing an infinitesimal reversible process

(@) dU = TdS-pdv
(b) dH = dU + pdV + Vdp = TdS + Vdp
(¢) dF =dU- TdS - SdT = — pdV - SdT
(d) dG = dH - TdS—- SdT = Vdp — SdT
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Since U, I, F and G are thermodynamic properties and exact differentials of the type

dz = M dx + N dy, then

5.~ (&)

Applying this to the four equations

oar| __|%e
av as),
or _[?_V_]
va,s_aSp
op| _ (28
ar), oV},
vl __|8s
an_ op );

These four equations are known as Maxwell s equations.

11.3 ‘ TdS EQUATIONS

Let entropy S be imagined as a function of T"and V. Then

as=|%5| ar+ a—S] av
ar ), o |

ras=1|%| ar+ 1|2 av
ar ), v ),

Since T [g‘;] = C,, heat capacity at constant volume, and

[_ai] = 3_p , Maxwell’s third equation,
aT ), aT ),

ras=c, dr+7|%2| av
ar ),

This is known as the first TdS equation.
If S =S(T, p)
o [5] r2]
or j, op);

a8 oS

o] (] o

or dp

oS a8 av
Since T [——] = C, and [_] - [_]
or » P op ), or o

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)
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14
TdS = C AT~ T [BTL dp (11.9)

This is known as the second TdS equation.

11.4 ‘ DIFFERENCE IN HEAT CAPACITIES

Equating the first and second 7dS equations

Again

o op
dS=CdT-T |— = et o
ds = C, [BTJP dp=C,dT+ T[ar]v av

op oV
C-CH)dT=T|—=—| dV+T|—
¢,-C) [ar]v + [8Tdep

[ap] [av]

or
dr = o v dv P dp
c,-C, C, -C,
oT or
dT = [-—] v+ [—] dp
o), dp),

Both these equations give

But

o3 3]

»m v ar) {or
[Q_Iz] [B_T.] [QK] o
or ), \ov b op ),
2
c-c,=-1|%] |% (11.10)
? aT ), \av ),

This is a very important equation in thermodynamics. It indicates the following important facts.

(@

()
©

2
Since [8—V] is always positive, and [%] for any substance is negative, (Cp —C,) is always positive.
T

P

Therefore, C, is always greater than C.,.
AsT— 0K, Cp — C, or at absolute zero, Cp =C,.

ov
When | <~
en [aT

c,=C,

\
J = 0 (e.g., for water at 4°C, when density is maximum, or specific volume minimum),
P
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(d) For an ideal gas, pV = mRT

[QV_] _mR _y
or), p T
and [ Op ] __ mRZT
v |, 174
C,-C,=mR
or c,—¢, = R
Equation (11.10) may also be expressed in terms of volume expansivity (), defined as
_ Lfov
~vler),
and isothermal compressibility (k;), defined as
16V
w7,
2
TV 1|7
vV \6T b
C-C, =
R .
vV {op);
2
C-C,= Ve (11.11)
P kg
11.5 RATIO OF HEAT CAPACITIES
At constant S, the two 7dS equations become
o
CAdT. =T | —
P S [BT ]p dps
CdT, =-T o dv
s aT v s

o)
EE_-_._[B_V_ or [21_’. = 6Vsz.),
C 6Tp8pV6VS

v

Since y> 1,
[Qz_’] S [é‘g]
v )g ov ),
Therefore, the slope of an isentrope is greater than that of an isotherm on p — v diagram (Fig. 11.1). For

geversible and adiabatic compression, the work done is
25

W,=hy—hy = [ vdp = Area 1-25-3-4-1
1
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For reversible and isothermal compression, the work

done would be
2T

WT=h2T—h1:f"dP:Areal—ZT—3—4_l }7
1
W, < W

For polytropic compression with 1 < n <+, the work
done will be between these two values. So, isothermal
compression requires minimum work. (See Sec. 10.4)

The adiabatic compressibility (k) is defined as

k :_L[?L]
s V\op s

_ [QV_]
_ o) _
v\
[5]5

or =X 11.12
Y k. ( )

11.6 ‘ ENERGY EQUATION

For a system undergoing an infinitesimal reversible process between two equilibrium states, the change of
internal energy is

£ Compression work in different
reversible processes

a
I I

x

dU = TdS - pdV
Substituting the first 7dS equation

dU=C dT+T [QE.] dv - pdv
v or )y
—C.dT+ T[_‘?Ii] _plav (11.13)
' ar )y
i U=u v
dU = [a—q] dT + {_BL]_] dv
oT |y v );
ou op
) =Tl 11.14
[6V]T [ar]v P (11.14)
This is known as the energy equation. Two applications of the equation are given below:
(a) For an ideal gas, p= nlli T
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v
U does not change when V changes at T = C.

w) (o) (@) _,
Op ) \ov )1 \oU );
2) (2] -(2] -
Op ) \ovV ), \oV );
Since [a_p] =0, 6—U =0
ov J; op ),
U does not change either when p changes at T = C. So the internal energy of an ideal gas is a function of

temperature only, as shown earlier in Chapter 10.
Another important point to note is that in Eq. (11.13), for an ideal gas

oU
T

_ ap
V= nRT and T|— -p=0
pr= R [BT ] d
Therefore dU=C_ dT
holds good for an ideal gas in any process (even when the volume changes). But for any other substance
dU=cC, dr
is true only when the volume is constant and dV = 0.
Similarly dH = TdS + Vdp
d dS=C dT-T [G_V]
- ~ e ot ), ¥
dH =C, dT + V—T[a—V] dp (11.15)
or ),
oV
oH = V—T(——] (11.16)
op T or b

As shown for internal energy, it can be similarly proved from Eq. (11.16) that the enthalpy of an ideal gas
is not a function of either volume or pressure

i.e. B—H =0 and [8—}1—] =
3[) T T

but a function of temperature alone.
Since for an ideal gas, pV = nRT

14
and V-T [——-] =0
P

the relation df/ = C dT is true for any process (even when the pressure changes). However, for any other
substance the relation dH = C, dT holds good only when the pressure remains constant or dp = 0.

(b) Thermal radiation in equilibrium with the enclosing walls possesses an energy that depends only on
the volume and temperature. The energy density (u), defined as the ratio of energy to volume, is a function
of temperature only, or
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% — £(T) only.

The electromagnetic theory of radiation states that radiation is equivalent to a photon gas and it exerts a
pressure, and that the pressure exerted by the black-body radiation in an enclosure is given by

u=

u
p= -3-
Black-body radiation is thus specified by the pressure, volume, and temperature of the radiation.

Since U=uVandp = -';-

[au] [6p] 1 du
—t =uand |—| =-—
v J; T ), 3dT

By substituting in the energy Eq. (11.13)

~Tdu u
3dr 3
du _ 44T
u T
or lnu=InT*+Inb
or u=>bhTrt
where b is a constant. This is known as the Stefan-Boltzmann Law.
Since U=uV= VbT*
[_3_(]_] — Cv = 4VpT?
oT )y
and [?E] —Lldu 4 4ps
orT jy 3dr 3

from the first 7dS equation

TdszcvdT+T[Q’i] v=4wrdr+ 2 o1t av
ar ), 3

For a reversible isothermal change of volume, the heat to be supplied reversibly to keep temperature
constant 4
Q= 3 bT* AV
For a reversible adiabatic change of volume

%bT‘dV=—4VbT3dT

& _ 54T
V T
or - VT? = const.

If the temperature is one-half the original temperature, the volume of black-body radiation is to be increased
adiabatically eight times its original volume so that the radiation remains in equilibrium with matter at that
temperature.
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11.7 JOULE-KELVIN EFFECT

A gas is made to undergo continuous throttling pro-
cess by a valve, as shown in Fig. 11.2. The pressures
and temperatures of the gas in the insulated pipe
upstream and downstream of the valve are measured
with suitable manometers and thermometers.

Let p, and T; be the arbitrarily chosen pressure and
temperature before throttling and let them be kept
constant. By operating the valve manually, the gas is
throttled successively to different pressures and tem-
peratures pg, Ty pe,, Tyy; Pry, Ty and so on. These
are then plotted on the T — p coordinates as shown in
Fig. 11.3. All the points represent equilibrium states of
some constant mass of gas, say, 1 kg, at which the gas
has the same enthalpy.

The curve passing through all these points is an
isenthalpic curve or an isenthalpe. It is not the graph
of a throttling process, but the graph through points
of equal enthalpy.

The initial temperature and pressure of the gas
(before throttling) are then set to new values, and by
throttling to different states, a family of isenthalpes
is obtained for the gas, as shown in Figs. 11.4
and 11.5. The curve passing through the maxima of
these isenthalpes is called the inversion curve.

t  Valve &

SENENN DARORRSARNENSNRNNA

G

insulation
$1.2. Joule-Thomson expansion

/pi

States after throttling

The numerical value of the slope of an isenthalpe on a T — p diagram at any point is called the Joule-
Kelvin coefficient and is denoted by x1,. Thus the locus of all points at which ., is zero is the inversion curve.
The region inside the inversion curve where 1, is positive is called the cooling region and the region outside

where p, is negative is called the heating region. So,

T
- [3
Op b
Maximum ]
Inversion \_\x —_
Temp

~
Cooling
region

Constant enthalpy
curves (isenthalpes)

Heating region

/'—er_\
4 Inversion curve (1 =0)

P —p

. Isenthalpic curves and the inversion curve
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The difference in enthalpy between two neigh-
bouring equilibrium states is -
dh = Tds + vdp - %~ Inversion curve(y, = 0)

and the second 7dS equation (per unit mass) 7\ Constant enthalpy

v curves

Tds=cpdT—T[-—] dp
or p Critical point
v Saturation curve
dh = c, dT-|T (ﬁ] —v| dp Liquid Vapour
p region

The second term in the above equation stands — s

only for a real gas, because for an ideal gas, dh =
c dT.
P

(11.17)

For an ideal gas

There is no change in temperature when an ideal gas is made to undergo a Joule-Kelvin expansion (i.e.
throttling).

For achieving the effect of cooling by Joule-Kelvin expansion, the initial temperature of the gas must be
below the point where the inversion curve intersects the temperature axis, i.e. below the maximum inversion
temperature. For nearly all substances, the maximum inversion temperature is above the normal ambient
temperature, and hence cooling can be obtained by the Joule-Kelvin effect. In the case of hydrogen and
helium, however, the gas is to be precooled in heat exchangers below the maximum inversion temperature
before it is throttled. For liquefaction, the gas has to be cooled below the critical temperature.

Let the initial state of gas before throttling be -
at 4 (Fig. 11.6). The change in temperature may LN .

) . . Cooling y+—Inversion curve
be positive, zero, or negative, depending upon the region B
final pressure after throttling. If the final pressure
lies between 4 and B, there will be a rise in tem-
perature or heating effect. If it is at C, there will be
no change in temperature. If the final pressure is
below p, there will be a cooling effect, and if the
final pressure is p,, the temperature drop will be
(T,-Tp).

Maximum temperature drop will occur if the ini-
tial state lies on the inversion curve. In Fig. 11.6, it is

(T -Ty).

~
~N

T

Clhefcme e Isenthalpe

Heating
region
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The volume expansivity is

1 ov

i
vloT ),

So the Joule-Kelvin coefficient 4, is given by, from Eq. (11.17)
1 ov
,U,J = —|T [ﬁ] -V
% P
) v

or b= — [BT-1]
%p

For an ideal gas, 8= 1 and uy;=0

T

There are two inversion temperatures for each pressure, e.g. T, and T, at pressure p (Fig. 11.4).

11.8 ‘ CLAUSIUS-CLAPEYRON EQUATION

During phase transitions like melting, vaporization and sublimation, the temperature and pressure remain
constant, while the entropy and volume change. If x is the fraction of initial phase i which has been trans-
formed into final phase f, then
s = (1 =x) s+ xsh
v=>1-x)v® +xv®
where s and v are linear function of x.
For reversible phase transition, the heat transferred per mole (or per kg) is the latent heat, given by

I = T{s©O— sV}
which indicates the change in entropy.
Now dg =-sdT + vdp
) 2]
or),
and v= [Q&]
op )y

A phase change of the first order is known as any phase change that satisfies the following requirements:

(a) There are changes of entropy and volume.
(b) The first-order derivatives of Gibbs function change discontinuously.

Let us consider the first-order phase transition of one mole of a substance from phase i to phase f. Using
the first 7dS equation 9
TdS=c, dT+ T [—P] dv

or )y

for the phase transition which is reversible, isothermal and isobaric, and integrating over the whole change of
phase, and since [.al] is independent of v
v T{sO_siy =7 L. (,0_ 0y
} dar

(f) _ D
_s -5 _ ! (11.18)

dr v(f) _ v(i) T{v(f) _ v(i)}
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The above equation is known as the Clausius-Clapeyron equation.

The Clausius-Clapeyron equation can also be derived in another
way.

For a reversible process at constant T and p, the Gibbs function T " L

Critical point

remains constant. Therefore, for the first-order phase change at T a

and p s 11V
g = gf) Trpt ! T

and for a phase change at 7+ d7 and p + dp (Fig. 11.7) T T

Subtracting dg® = dg'

or —sDdT + v dp =-sHdT+ v dp

dp S( f) _ s(i) i

ar - O 0 T[v‘” _vm]

For fusion

o _

dT T (V” — vl)

where [, is the latent heat of fusion, the first prime indicates the saturated solid state, and the second prime
the saturated liquid state. The slope of the fusion curve is determined by (v’ --v), since /;, and T are positive.
If the substance expands on melting, v/ > v/, the slope is positive. This is the usual case. Water, however,
contracts on melting and has the fusion curve with a negative siope {Fig. 11.8).

For vaporization
i o _ e

dr T(v”’ _ vu)
where [ is the latent heat of vaporization, and the third prime indicates the saturated vapour state.

] = T@— " —v'")
dr

vap

Fusion curve
For wage,—\ For any other substance
) (positive slope) " .
(negative \ Critical point
siope) \
\
a Solid \ Liquid Vaporization curve
\
T Pip————— A d,
\ dr
Sublimation Vapour
curve

Triple point

T

—T

Phase diagram for water and any other substance on p-T coordinates
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At temperature considerably below the critical temperature, v/ >> v and using the ideal gas equation of
state for vapour RT

P
~ TEE
vap dT p

2
R & (11.19)
P p dT
If the slope dp/dT at any state (e.g. point p,, T, in Fig. 11.8) is known, the latent heat of vaporization can
be computed from the above equation.
The vapour pressure curve is of the form
B

np=A4+ L +CinT+DT
T

VIII

or

where 4, B, C and D are constants. By differentiating with respect to T

1 dp B C
= =_2.>.D 11.20)
> dr T + ( ,

Equations (11.19) and (11.20) can be used to estimate the latent heat of vaporization.

Clapeyron’s equation can also be used to estimate approximately the vapour pressure of a liquid at any
arbitrary temperature in conjunction with a relation for the latent heat of a substance, known as Trouton s
rule, which states that i

—f& =~ 88 kJ/kgmol K

Ty
where }Tf is the latent heat of vaporization in kJ/kgmol and ATy, is the boiling point at 1.013 bar. On substitut-
ing this mto Eq. (11.19)

dp _ 38T,
ar  Rr2’
o ¢ dp 88T, dT
===
101.325 P R T, r
n_2 _ _88TB _l__i
101.325 R |\T Ty
88 T
=101.325exp |—|1--L2 (11.21
r PI1% [ T ] )
This gives the vapour pressure p in kPa at any temperature 7.
For sublimation /
o L
dTr T(vll/_vl)
where [, is the latent heat of sublimation. RT
Since v/"’ >> v/, and vapour pressure is low, v/// = —
p
2 - lsub
dr 7 RT
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or 1 =-2303 g d0eP)
d(/T)
the slope of log p vs. 1/T curve is negative, and if it is known, / ; can be estimated.
At the triple point (Fig. 9.12),

lsub = lvap + Ifus
[2] _ ptplvap
dT )p RT;
(Ee_] _ Polow
dT J RT,
Since [ > lvap, at the triple point

L2 L'd
[dT ]sub g [dT

vap

l 295

(11.22)

Therefore, the slope of the sublimation curve at the triple point is greater than that of the vaporization curve

(Fig. 11.8).

11.9 EVALUATION OF THERMODYNAMIC PROPERTIES
FROM AN EQUATION OF STATE

Apart from calculating pressure, volume, or temperature, an equation of state can also be used to evaluate other
thermodynamic properties such as internal energy, enthalpy and entropy. The property relations to be used are:

op
du=c dT+ |Tj=——| —p| dv 11.23
v [ [ aT ] P (11.23)
v
dh=c dT+ |v—T|{—]| | dp (11.24)
P oT J,
ds= Ll dT+T @] dv
T or ),
1 ov ,
= —Ic dT—T[—] dv (11.25) (P, To) p=C
T|”* oT ), b B(p, T)
Integrations of the differential relations of the
properties p, v and T in the above equations are car-
ried out with the help of an equation of state. The p To=C T=C
changes in properties are independent of the path
and depend only on the end states. Let us consider po=C
that the change in enthalpy per unit mass of a gas alon T
. o (Po. T)
from a reference state 0 at p,, T, having enthalpy, Po.To)
h, to some other state B at p, 7 with enthalpy 4 is oo
to be calculated (Fig. 11.9). The reversible path 08 T
may be replaced for convenience by either path I ]
0—a-B or path 0—b—B, both also being reversible. Fig- 188 Processes connecting states (py, Tg) and (p, T)
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Path 0—a-B:
From Eq. 11.24, T
h,—hy= ¢, dr
/
P ov
h-h = -T|—
a fp Y [6T ]p ¥
On addition,
T P ov
h - h() - [‘];o cpdT’po + ["/;0 YT T[ﬁ]p dp’ (1 1'26)
Similarly, for !
Path 0-5-B: ov T
P
—h = —-T|— + dr ] 11.27
h 0 {LOV [8T]de}To j;‘,,CP . (11.27)

Equation (11.26) is preferred to Eq. (11.27) since c, at lower pressure can be conveniently measured.

Now, o v .
f;oova d(pv)zfv.pdv+ j;ovdp

f: vdp =pv—pyv, - f;v pdv

@J .
Ovir -

(11.28)

T

Again,

o
P

FYd Op|,

v

r__|op
or

, 0T

v
Op

v T

) )«

Op
p—T[—] ]dv} (11.29)
or),| |,

Substituting in Eq. (11.26),

T v
h—h,= [f]_ cpdT] +pv-pyv, - f; pdv
° Po ?

= (L:cpdTpo +pv-py, - [fvv

To find the entropy change, Eq. (11.25) is integrated to yield:
T dT p( Ov
SRCRICE
¢ Po ° p T
T dT
= f Pt BN Y QEj ov dp
T, P T Po BT u 3p T -

= ijcpdTT +J:Y[g%]vdv-r

(11.30)
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11.1 GENERAL THERMODYNAMIC CONSIDERATIONS
ON AN EQUATION OF STATE

Certain general characteristics are common to all gases. These must be clearly observed in the developing
and testing of an equation of state. It is edifying to discuss briefly some of the more important ones:

(i) Any equation of state must reduce to the ideal gas equation as pressure approaches zero at any tem-
perature. This is clearly seen in a generalized compressibility factor chart in which all isotherms converge to
the point z = 1 at zero pressure. Therefore,

pv

lim = ] at any temperature
p—0| R

Also, as seen from Fig. 10.6, the reduced isotherms approach the line z = 1 as the temperature approaches

infinity, or: ;
.| pv
Tlxm —F] = 1 at any pressure.

(i) The critical isotherm of an equation of state should have a point of inflection at the critical point on
p—v coordinates, or

b 2
P2l —oad|=E| =0
Ovlr_g ov =T,
(iii) The isochores of an equation of state on a p-T diagram should be essentially straight, or:
2
gl;: = constant, Q—I: =0asp— 0,oras T — oo

An equation of state can predict the slope of the critical isochores of a fluid. This slope is identical with the
slope of the vaporization curve at the critical point. From
the Clapegron equation, dp/dT = As/Av, the slope of the
vaporization curve at the critical point becomes:

dp _ |05 _ o

dr v or

Therefore, the vapour-pressure slope at the critical
point, dp/dT, is equal to the slope of the critical isochore
(8p/8T),, (Fig. 11.10).

(iv) The slopes of the isotherms of an equation of
state on a Z—p compressibility factor chartas p approaches
zero should be negative at lower temperatures and posi-
tive at higher temperatures. At the Boyle temperature, the
slope is zero as p approaches zero, or

lim‘a—z =0atT=T,
p—0|0p |1

An equation of state should predict the Boyle tempera-
ture which is about 2.54 T, for many gases.

An isotherm of maximum slope on the Z—p plot as p T
approaches zero, called the foldback isotherm, which is
about 5T, for many gases, should be predicted by an equa- Fig. 1110 Pressure-temperature diagram with
tion of state, for which: isochoric lines

(by Maxwell’s equation)  p

T\‘

vc
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2
oT -op

where T; is the foldback temperature (Fig. 10.10 a). As temperature increases beyond T}, the slope of the
isotherm decreases, but always remains positive.
(v) An equation of state should predict the Joule-Thomson coefficient, which is

=0at7T=T,
p—0

1 [Bv] RT? (az ]
MKy = — T|l—| —v| = _—
¢,| (0T » pe, \OT >
For the inversion curve, u; =0, 5
)z
or, [8—7:]p =0

11.1 MIXTURES OF VARIABLE COMPOSITION

Let us consider a system containing a mixture of substances 1,2, 3 ... K. If some quantities of a substance
are added to the system, the energy of the system will increase. Thus for a system of variable composition,
the internal energy depends not only on S and V, but also on the number of moles (or mass) of various con-
stituents of the system.

Thus U=U(, YV, Bys By ooy By)
where n, n,, ..., ny are the number of moles of substances 1, 2, ..., K. The composition may change not only

due to addition or subtraction, but also due to chemical reaction and inter-phase mass transfer. For a small
change in U, assuming the function to be continuous.

U U U ] U
dU=|— ds+ |— dv+ |7 dn — dn
[as JV,n,,nA,,.“,nK * (aV ]S,n),n:,m,nK + [anl S,V,n,,...ng ! + 6"2 S.V.n.n....n 2
U
+ ..+ dny
anK S,V,n,,n,,...n,
oU oU K [oU
dU=|— —1 4V — dn,
o 5, o ), v+ 55w

where subscript i indicates any substance and subscript j any other substance except the one whose number
of moles is changing.
If the composition does not change

dU=TdS - pdV
) n o [ -
8y, ~ " or)s, T7F
X [aU
dU=TdS—pdV+ 3 | dn (11.31)
i=1 ani S,V,nj '

Molal chemical potential, u, of component i is defined as

]
=53
On; S,V,n,

1
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signifying the change in internal energy per unit mole of component i when S, V, and the number of moles
of all other components are constant.

K
dU=TdS-pdV+ S pdn,

i=l

K

or TdS=dU+pdV- )" p;dn, (11.32)
i=1
This is known as Gibbs entropy equation.
In a similar manner
G=G(p,T,n;,ny, ..., ng)
G dG %[0G
or dG = [—] dp + [—J dT + [——] dn,
ap T,n or p.n; § 0 i T,p.n,
X (oG
= Vdp-SdT+ ) _|—| dn, (11.33)
= \On, T,p,m,
Since G=U+pV-TS
X (oG
dU+pV-TS)=VdP-SAT + D | — dn,
i1 \Om; T,p.n,
K .[8G
or dU+pdV + Vdp - TdS—SdT = Vdp—-SdT+ » o dn,
i i=1 i T.p.n,
. K (186G
or dU=TdS—pdV+Z . dn,
i1 \On,; T.pn,

Comparing this equation with Eq. (11.31)
[6U] [66 ]
on; S,V.n, On; T.p.n,

K
dG = Vdp—SdT+ > p,dn,

i=1

*. Equation (11.33) becomes

Similar equations can be obtained for changes in H and F.
Thus

K
dU=TdS-pdV+ > pdn

i=1

K
dG= Vdp-SdT+ 3 p,dn

i=l1

K
dH=TdS+ Vdp + 5 s, dn, (11.34)

i=1
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K
dF =-SdT-pdV+ Y p,dn

i=1

ou 0 OH oF
o -ELEL e
i Js,v.n, On, T,p,n, on; S,pon, On; T,V.n,

where

=

Chemical potential is an intensive property.
Let us consider a homogeneous phase of a multi-component system, for which

dU=TdS-pdV + XK: p, dn,
i=1
If the phase is enlarged in size, U, S, and V will increase, whereas T, p and p will remain the same. Thus
AU =TAS-pAV + Xy, An,
Let the system be enlarged to K-times the original size. Then
AU=KU-U=K-1)U
AS=KS-S=K-1)S
AV=K-1)V
An.=(K-1)n,
Substituting
K-DU=TK-1DS-pK-1)V+Zp (K-1)n,
U=TS-pV+ Xun,
S Gy, = X pn, (11.36)
Let us now find a relationship if there is a simultaneous change in intensive property. Differentiating
Eq. (11.36)

dG =Y n. dp, + X pdn, (11.37)
at constant 7 and p, with only y changing.
When T and p change
dG =-8dT + Vdp + Zudn, (11.38)
Combining Eqs (11.37) and (11.38)
-8dT+ Vdp— X'n,dp,=0 (11.39)

This is known as Gibbs-Duhem equation, which shows the necessary relationship for simultaneous
changes in 7, p, and p.
Now
G; = Xopn = png + pon, .+ iy
For a phase consisting of only one constituent

G=pun
or I_ng:g
n

i.e. the chemical potential is the molar Gibbs function and is a function of 7 and p only.
For a single phase, multi-component system, g, is a function of 7, p, and the mole fraction x;.
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1 1.1“ CONDITIONS OF EQUILIBRIUM OF A HETEROGENEOUS SYSTEM

Let us consider a heterogeneous system of volume V; in which several homogeneous phases (¢ = a, b, ..., r)
exist in equilibrium. Let us suppose that each phase consists of i (= 1, 2, ..., C) constituents and that the
number of constituents in any phase is different from the others.

Within each phase, a change in internal energy is accompanied by a change in entropy, volume and com-
position, according to . c
dU,=T,dS,-p,dV, + ZI: (1, dn),

A change in the internal energy of the entire system can, therefore, be expressed as

r r I T C
D AU, =30 T,dS,- ) pedV+ ) > (ydm, (11.40)
b=a o=a d=a do=a i=l
Also, a change in the internal energy of the entire system involves changes in the internal energy of the
constituent phases. r

dU =dU, + dU, + ... + dU, = f{; du,

Likewise, changes in the volume, entropy, or chemical composition of the entire system result from con-
tributions from each of the phases . :
dV=dV,+dV, +..+dV,= ) dV,
d=a
dS=ds, +dS, + .. +dS,= Y _ dS,
b=a

I
dn=dn, +dn, +..+dn,= ) dn,
b=a
In a closed system in equilibrium, the internal energy, volume, entropy, and mass are constant.

dU=dV=dS=dn=0

or dU, = - (U, + ... +dU) = -y dU,
av,= -3 av, ’
S
ds,= -y ds, (11.41)
j .
dn,= -3 dn,
)

where subscript j includes all phases except phase a.
Equation (11.40) can be written in terms of j independent variables and the dependent variable a
Eq. (11.41).

(125, 085~ [p, vt T av] 4 [T gndn,+ TG dn)| =0
i ) j i i
Substituting from Eq. (11.41)

[— T, ;dsﬁ ; Tjdsj]‘[‘Pa Zj:dVPL Zj:Pj % de] +[‘ Zj:z':l‘md”iﬁ ;Zi:(“id”i)j]=0
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where subscript j a refers to component i of phase a.

Rearranging and combining the coefficients of the independent variables, de, d VJ and dnj, gives

Do (T—T)dS = 3 (py~p AV, + 32D (= ) dny =0
J J J i
But since de, d Vj, and dnj are independent, their coefficients must each be equal to zero.
Tj = Ta’ pj =D, 'u'ij = W, (1142)

These equations represent conditions that exist when the system is in thermal, mechanical, and chemi-
cal equilibrium. The temperature and pressure of phase a must be equal to those of all other phases, and
the chemical potential of the ith component in phase a must be equal to the chemical potential of the same
component in all other phases.

11.13 ‘ GIBBS PHASE RULE

Let us consider a heterogeneous system of C chemical constituents which do not combine chemically with
one another. Let us suppose that there are ¢ phases, and every constituent is present in each phase. The
constituents are denoted by subscripts and the phases by superscripts. The Gibbs function of the whole het-
erogeneous system is c c c
- H,d 2) ,, 2
GT,p — Zni( ),J'l( )+ Z ni( )ﬂl( )+ e + Z ni(d’) ul(¢)

i=1 i=1 i=1
G is a function of 7, p, and the »n’s of which there are C¢ in number. Since there are no chemical reactions,
the only way in which the n’s may change is by the transport of the constituents from one phase to another. In
this case the total number of moles of each constituent will remain constant.

n®+n@+ .+ n @ = constant

n,W 4+ n@ + .+ n,® = constant

(1) 2) (@) —
ne’ + n + ..o+ n'® = constant

These are the equations of constraint.
At chemical equilibrium, G will be rendered a minimum at constant 7" and p, subject to these equations of
constraint. At equilibrium, from Eq. (11.42).

Hig = Hig
N](l): IJ'I(Z) = ..= l‘l'l(a’)
p = p,® = = HZ“’” (11.43)
uc(l)z ll’c(Z) =..= ’j,c(‘p)

These are known as the equations of phase equilibrium. The equations of the phase equilibrium of one
constituent are (¢ — 1) in number. Therefore, for C constituents, there are C(¢ — 1) such equations.

When equilibrium has been reached, there is no transport of matter from one phase to another. Therefore,
in each phase, 3’ x = 1. For ¢ phases, there are ¢ such equations available.

The state of the system at equilibrium is determined by the temperature, pressure, and C¢» mole fractions.
Therefore

Total number of variables = C¢ + 2.
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Among these variables, there are C(¢ — 1) equations of phase equilibrium and ¢ equations of £x = 1 type.
Therefore

Total number of equations = C (¢ — 1) + ¢

If the number of variables is equal to the number of equations, the system is nonvariant. If the number of
variables exceeds the number of equations by one, then the system is called monovariant and is said to have
a variance of 1.

The excess of variables over equations is called the variance, f. Thus

f=(Cp+2)-[Cle—-1)+ 9]

or f=C-¢+2 (11.44)

This is known as the Gibbs Phase Rule for a non-reactive system. The variance ‘f” is also known as the
degree of freedom.

For a pure substance existing in a single phase, C = 1, ¢ = 1, and therefore, the variance is 2. There are
two properties required to be known to fix up the state of the system at equilibrium.

If C=1, ¢ = 2, then f = 1, i.e. only one property is required to fix up the state of a single-component
two-phase system.

If C = 1, ¢ = 3, then /= 0. The state is thus unique for a substance; and refers to the triple point where all
the three phases exist in equilibrium.

11.14 ! TYPES OF EQUILIBRIUM

The thermodynamic potential which controls equilibrium in
a system depends on the particular constraints imposed on the
system. Let & Q b~ the amount of heat transfer involved between
the system and the reservoir in an infinitesimal irreversible pro-
cess (Fig. 11.11). Let dS denote the entropy change of the system
and dS, the entropy change of the reservoir. Then, from the
entropy principle

Reservoir
T

Heat interaction between a

dS, +ds>0 i system and its surroundings
Since dSO=—Q—EQ+dS>O

T T
or dQ-TdS<0

During the infinitesimal process, the internal energy of the system changes by an amount dU, and an
amount of work pdV is performed. So, by the first law

adQ =dU+ pdV
Thus the inequality becomes
dU+pdV-TdS <0 (11.45)
If the constraints are constant U and V, then the Eq. (11.46) reduces to
dS>0

The condition of constant U and V refers to an isolated system. Therefore, entropy is the critical parameter
to determine the state of thermodynamic equilibrium of an isolated system. The entropy of an isolated system
always increases and reaches a maximum value when equilibrium is reached.

If the constraints imposed on the system are constant T and V, the Eq. (11.45) reduces to

dU-d(TS) < 0
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or dU-TS)<0
dF <0
which expresses that the Helmholtz function decreases, becoming a minimum at the final equilibrium state.
If the constraints are constant T and p, the Eq. (11.46) becomes
dU+d(pV)-d(TS)< 0
dU+pV-TS)<0
dG <0
The Gibbs function of a system at constant 7and p decreases during
an irreversible process, becoming a minimum at the final equilibrium
state. For a system constrained in a process to constant T and p, G is
the critical parameter to determine the state of equilibrium.

The thermodynamic potential and the corresponding constrained
variables are shown below.

—8S

S U 1% / oo

% F Equilibrium :

P G T '
This trend of G, F, or S establishes four types of equilibrium, namely # Poss ib;e process for an
(a) stable, (b) neutral, (c) unstable, and (d) metastable. isolated system

A system is said to be in a state of stable equilibrium if, when the
state is perturbed, the system returns to its original state. A system
is not in equilibrium if there is a spontaneous change in the state. If
there is a spontaneous change in the system, the entropy of the system
increases and reaches a maximum when the equilibrium condition is
reached (Fig. 11.12). Both 4 and B (Fig. 11.13) are assumed to be at
the same temperature 7. Let there be some spontaneous change; the
temperature of A rises to T + dTl, and that of B decreases to 7— dT. 5
For simplicity, let the heat capacities of the bodies be the same, so

Diathermal wall

that dT, = dT. , = dT. If &Q is the heat interaction involved, then the Isolated system
entropy change . Spontaneous changes
= a0 , =_ Y in A and B due to heat
A T4dr B T —dr interaction
1 1 2.dT
dS=dS, +dS, = & —_ = .
S VT dT‘ rz 92

So there is a decrease in entropy for the isolated system of 4 and B together. It is thus clear that the
variation in temperature d7 cannot take place. The system, therefore, exists in a stable equilibrium condition.
Perturbation of the state produces an absurd situation and the system must revert to the original stable state.
It may be observed:

If for all the possible variations in state of the isolated system, there is a negative change in entropy, then
the system is in stable equilibrium.

(dS)yy>0 Spontaneous change
dS)yy =0 Equilibrium (11.46)
dS)yy <0 Criterion of stability
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Similarly
(dG)ka <0,(dF);y <0 Spontaneous change
dG), = 0, (dF);, =0 Equilibrium (11.47)
(dG)P’T >0, (dF); >0 Criterion of stability

A system is in a state of stable equilibrium if, for any finite variation of the system at constant " and p, G
increases, i.e. the stable equilibrium state corresponds to the minimum value of G.

A system is said to be in a state of neutral equilibrium when the thermodynamic criterion of equilibrium
(G, F, S, U, or H) remains at constant value for all possible variations of finite magnitude. If perturbed, the
system does not revert to the original state.

For a system at constant 7 and p, the criterion of neutral equilibrium is

o 6Gp,=0
Similarly
6Fy=0,0H,=0, §Ugy=0,68,y= 0

A system is in a state of unstable equilibrium when the thermodynamic criterion is neither an extremum
nor a constant value for all possible variations in the system. If the system is in unstable equilibrium, there
will be a spontaneous change accompanied by

6GT’p <0, 6FT,V <0, 6US,V <0, 6Hs_p <0, 5SU,V >0

A system is in a state of metastable equilibrium if it is stable to small but not to large disturbances. A mix-
ture of oxygen and hydrogen is in a metastable equilibrium. A little spark may start a chemical reaction. Such
a mixture is not in its most stable state, even though in the absence of a spark it appears to be stable.

Figure 11.14 shows different types of equilibrium together with their mechanical analogies. S has been
used as the criterion for equilibrium.

11.15 ' LOCAL EQUILIBRIUM CONDITIONS
Let an arbitrary division of an isolated system be considered, such that
§=8+8,U=U+U,
Then for equilibrium, it must satisfy the condition

6S )U,V =0
7)) (%)) (%)} 7}
Stable Unstable Neutral Composition

metastable

Types of equilibrium
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to first order in small displacements (otherwise &S could be made positive because of higher order terms).
Now to the first order in a very small change

6,8= [%]V oU, + [%Jv 6U, + [3&971]“ oV, + %]u oV,
Now 7d4S = dU + pdV
[_ai] _1 [QJ _P
ou), 1’ \ov v T

1 1 P P
6S= — U+ — 8U,+ =L 6V, + 6V
1 T, 1 T, 2 T, 1 T, 2

Again 68U, =-6U,and 6V, =-4V,
6,8 = —1—— L oU, + by Py 0V, + Second order terms
I, T, I, T,
When 6,8 = 0, at equilibrium
TI,=T,p =p,

11.1!‘ CONDITIONS OF STABILITY

At equilibrium, § = Sae F = F i G= G, and SS = 0, 6F = 0; 6G = 0; these are necessary but not suf-
ficient conditions for equilibrium. To prove that S is a maximum, and G or F a minimum, it must satisfy
028 < 0,6%F > 0,62G >0
If the system is perturbed, and for any infinitesimal change of the system
(68)yy <0, («SG)p)T >0, (6F)TN >0

it represents the stability of the system. The system must revert to the original state.
For a spontaneous change, from Eq. (11.46)

8U + p6V —T65 < 0

For stability
SU+ pbV-T68 >0

Let us choose U = U (S, V) and expand §U in powers of 6V and 8S.

5104 1 (8%U [au}
U=|—| 85+ = |=—=| (62 + |—| 6V
[BS]V 2 asz]v ©9) ov )
1(8*U o*U 1 (82U
== V3 + V- 6S+ ... =T6S-p6V+ —|—| (657
2ot O aras P es),
1{8*U U
— SV + SV-65+ ...
2(ov2 ), O v es
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The third order and higher terms are neglected.
Since U + pév — T6S > 0, it must satisfy the conditions given below

2 2 2
UL 50,|2Y] 5o, 20U
as?), " \av?), T ov-as

These inequalities indicate how the signs of some important physical quantities become restricted for a
system to be stable.

>0

Since [8—U] =
os ),
5, - (&,
as*), \os), C,
L 5o
CV
Since T> 0K
C >0 (11.48)
which is the condition of thermal stability.
0
Al = o =-
) [BV JS P
5, - 1]
v v Jg
or| (11.49)
ov )

i.e. the adiabatic bulk modulus must be negative.
Similarly, if F = F (T - V'), then by Taylor’s expansion, and using appropriate substitution

2 2 2
6F:~S6T~p6V+16€ (6V)2+1Q—€— 6Ty + o F SOV 6T+ ...
2{ov-); 2{or° ) av -or
For stability
OF + 86T+ p6V >0
2
7r)
av*),
. OF
A = =—
gain [GV]T p
O’F

:_[8_1)]
vl v
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op
— <0 11.50
7). i
which is known as the condition of mechanical stability. The isothermal bulk modulus must also be
negative.
it SRR TR R R ey
Solved Examples
Example 11.1
(a) Derive the equation
ocC, 4
op N - or?

P
(b) Prove that G, of an ideal gas is a function of T only.
(c) In the case of a gas obeving the equation of state

PV —14+Bp
RT

where B’ is a function of T only, show that

P

where (G is the value at very low pressures.

Solution
oS
=T|—=
(@) G, [ ar]
P
oc, _ 9%s
dp o oT -Op
Now [?—6;] =—[a—V] , by Maxwell’s relation
op )y orT b
o’s |9V
dp-T or? )
ac, v
P —_ >
ap T or .
(b) For an ideal gas
V= nRT
p

_ 2
C.=-R Tp;dT—Z(B’T) +(C)y

Proved.
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65p . . .
=0, i.e. C_is a function of T alone.
ap P
T
(©) PY —14+Bp
RT
Bp= P2V |
RT
pr= {2V | |¥_T
P\RT R p
0 g 4 L[2%) _1
or R\OT P
P )
9’ (B'T) 1 v _ 1 8CT,
aT? R|oT? RT | 0p |
.. On integration
= = d? , _
C, =-Rp_= (B'T) + C,y

where épo (integration constant) is the value of C » atvery low values of pressure.

Example 11.2

The Joule-Kelvin coefficient pi, is a measure of the temperature change during a throttling process. A simi-
lar measure of the temperature change produced by an isentropic change of pressure is provided by the

coefficient i1, where oT
o [ﬁ]s
Prove that
14
H— By = E—

P

Solution The Joule-Kelvin coefficient, Hy is given by
r [QK] Ly
or b
C

P

7]
Since C, =T o5 and by Maxwell’s relation
4 oT .

7], -[53),



.310 l

Basic and Applied Thermodynamics
T [QS_]
___Opk ¥
T[] G
or ),
__[8s) (or) _v.
=" ep);10s), " C,
. 0S| (0T (op
S - |75=1 =] =-1
[ap]T [as],, [ar]s
V
W=+ 1= o
P
vV
Hs— 1 = C—

Alternative method:
From the second 7dS equation

TdS=deT—T[aV] dp

aT
P
ory _ _ T (oV
ap). T o A
Now ;= LT[B—V] . 74
c,| lor),
y
== o

I Example 11.3

Proved.

Proved.

If the boiling point of benzene at 1 atm pressure is 353 K, estimate the approximate value of the vapour
pressure of benzene at 303 K.

Solution Using Clapeyron’s equation and Trouton’s rule, Eq. (11.21),

88 T,
= 101325 exp {0 |11
g P {R [ T ]}

= 101.325 exp
8.3143

= 17.7 kPa

88 (353
303

Ans.
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Example 11.4

The vapour pressure, in mm of mercury, of solid ammonia is given by
np=23.03- 34
T
and that of liquid ammonia by
Inp = 19.49 - 3963

(@) What is the temperature of the triple point? What is the pressure? (b) What are the latent heats of subli-
mation and vaporization? (c) What is the latent heat of fusion at the triple point?

Solution At the triple point, the saturated solid and saturated liquid lines meet.

23.03 - 3_7T5_4 — 19.49 - 3063

T'=1952K

Ans. (a)
Inp=23.03— 3154
195.2
Inp=3.80
p = 44.67 mm Hg Ans.

. . RT
With the assumptions, v/”/ >> v/ and v/ ~ —

Clausius-Clapeyron equation reduces to

dp Y 2 ]
dr - R Tz sub
where [ is the latent heat of sublimation.

The vapour pressure of solid ammonia is given by

Inp=23.03— 34

1o _ 3754

p dT T?
Y _354aP _ P
ar T? RT? °

I, = 3754 x 8.3143 = 31,200 kJ/kg mol

The vapour pressure of liquid ammonia is given by

1np=19.49-§%§
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P 3063 2 -2

a7 T2 Rr?
where lVap is the latent heat of vaporization.
. [, =3063 x 8.3143 = 25,500 kJ/kg mol Ans. (b)
At the triple point
L,=1_+1

where [, is the latent heat of fusion.
I =1, — lvap = 31,200 - 25,500 = 5,700 kJ/kg mol

l Example 11.5

l Explain why the specific heat of a saturated vapour may be negative.

Solution  As seen in Fig. Ex. 11.5, if heat is trans-
ferred along the saturation line, there is a
decrease in temperature. The slope of the
saturated vapour line is negative, i.e. when [
ds is positive, dT is negative. Therefore,

Saturated vapour line

the specific heat at constant saturation T
dSl/I
(8]

is negative. From the second TdS equation

oV
IdS=CdT-T |—
77(55) o
” n
r 98 :CP_T[aV ] [d_p]
dr or AT )
=C -T- nR_ e [using p V""" = n R T and Clapeyron’s equation]
g P T(V”’—V") gp - peyT q
"__ 144 lvap Y7} 1"
Ca=6C, o [ V7">> V"
Iva
Cs’a,tl = Cp - 7;)_
Now the value of [ /T for common substances is about 83.74 J/g mol K (Trouton s rule), where
C > is less than 41.87 J/g mol K. Therefore, C?/! can be negative. Proved.

I Example 11.6

(a) Establish the condition of equilibrium of a closed composite system consisting of two simple systems
separated by a movable diathermal wall that is impervious to the flow of matter.
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(b) If the wall were rigid and diathermal, permeable to one type of material, and impermeable to all
others, state the condition of equilibrium of the composite system.
(¢) Two particular systems have the following equations of state.

and L _3zN p_ghy
T, 2 U, T, ¥,

where R = 8.3143 kJ/kg mol K, and the subscripts indicate systems 1 and 2. The mole number of the first
system is N, = 0.5, and that of the second is N, = 0.75. The two systems are contained in a closed adiabatic
cylinder, separated by a movable diathermal piston. The initial temperatures are T) = 200 K and T, = 300
K, and the total volume is 0.02 m>. What is the energy and volume of each system in equilibrium? What is
the pressure and temperature?

Solution For the composite system, as shown in Fig. Ex. 1 1.6(a)
U, + U, = constant
V, = V, = constant
The values of U, U,, V},and V, would change in such a way as to maximize the value of entropy.
Therefore, when the equilibrium condition is achieved
ds=0
for the whole system. Since
§=8,+8, =8, Vy, .. Ny )+ S, (Uy, Vyy oy Nip )

Movable diathermal
wall impervious to

L L L
T the flow of matter
/ | /
/] \ V
7] Subsystem-1 | Subsystem-2 ;
I
|
|
7 7 7 7’
(a)
’ Ll Lt
g ' - DD
21 Subsystem-1 ! Subsystem-2 | #
y ! 1 2
7 / 777777777 Y /il v
/
Rigid and diathermal / 77T
wall permeable to flow Movable, diathermal

of one type of material wall

(b) ©
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oS oS
ﬁ:[—L] dq+{—i] av,
8U1 V. N ... aVl U,...Ny o

asz] v
v, ), 2

oU,

=idm+ﬂdm+id%+&dn
T, T, T, T,

oS
+ [ ZJ du, +
Vooow Ny

Since dU, + dU, = 0 and dV, +dV,=0
as=|L_1 du, + [BL_ P2
I, T, I, T,
Since the expression must vanish for arbitrary and independent values of dU,anddV,
1 1

dv, =0

or p=p,and T, =T,

These are the conditions of mechanical and thermal equilibrium.

(b) We will consider the equilibrium state of two simple subsystems (Fig. Ex. 11.6(b)) con-
nected by a rigid and diathermal wall, permeable to one type of material (N,) and impermeable
to all others (N,, N, ... N,). We thus seek the equilibrium values of U, and of U,, and of N,_,and
N, (i.e. material N, in subsystems 1 and 2 respectively.)

At equilibrium, an infinitesimal change in entropy is zero

dS=0
Now dS = ds, + ds,
a8, [a&}
==L U, + |1 dw, _
[aUl Vi,N, l 8N|71 U, Vi.N, e

From the equation

TdS = dU + pd V - udN

95 _1los)  _ 4
aU V,N,... B T’ 6N u,v B ;

and dN,_, +dN, ,=0

dU, + dU, = ¢
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dS:[l_l] [u__u_ =0
T\ T T, T,
As dS must vanish for arbitrary values of both dU, and dV, _,
T,=T,
Hi 1= H

which are the conditions of thermal and chemical equilibrium.
(c) N, =0.5 gmol, N, = 0.75 g mol

T, ,=200K T, ,=300K
V=V, +V,=002m’
U, + U, = constant
AU, + AU, =0
Let T; be the final temperature (Fig. Ex. 11.6(c))

U =V )=-W_,-U_)
3RN, (T,-T,_) =—%§N2 (T,~T,_,)

0.5 (7;—200) = - 0.75 (T, - 300)

1.25 7, = 325
or T.=260K

Uy, = 3% NT,= 3 X 83143 x 0.5 x 10° x 260 = 1.629 kJ

=3 >
Uy ,= 3 x 83143 x 075 x 107 x 260 = 2430 kJ

2
V. = RN, T, At equilibrium
f-27 Ps_, Piy = P2 =P,
RN, T,_,
Vi = — I, \=T; ,=T;
)

RT,
Vi \+V,,= p_f NV, + N,) = 0.02 m*
f

83143%260 125 x 10 - 0.02m?
Py
= 8.3143x260x1.25x107 i
0.02

= 135 kN/m? = 1.35 bar

'315'

Ans.

Ans.
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135
|4

Example 11.7

8.3143x 0.5x 1072 x 260
Ve, = = 0.008 m?

., =0.02-0.008 = 0.012 m’

Ans.

Show that for a van der Waals’ gas

dc,|
@ [3V]T =0

() (s,-s)=RIn

v, —b

2
vV —

() T(v— b)R/C' = constant, for an isentropic
R
1-2a(v—b)’ /RTV?

@) c,—¢, =

© (hy—hy)r =0y, -, v) +a [VL__I_]

1 Y2

Solution (a) From the energy Eq. (11.13)

U\ _rfer) _,
v ), ar |,
oU_ _r|2p +(ég] _[a_,,]
oV -8T ar*), \orj, \or),
U _ (%
av -oT or*),

C_[QH]

v lar),
ac,) U _(&p _[ai}
ov ), or-av |ar?), |ov)

For a van der Waals’ gas

(p+iz] (v—b)=RT
\4

__RT _a
p v—b v2
sz _
—=| =

or v
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[BC" ] =0 Proved (a)
ov ),

c, is independent of volume.
(b) From the first 7ds Eq. (11.8)
op

Tds=c dT+T || d

and energy Eq. (11.13), [‘LUJ _ T[a_l’] —p
T v

av or
ds:cvd_T+l p+[?£] dv
T T ov );
For van der Waals’ gas
@) -
ov ), V2
dr 1 a dT R
ds=c, —+— —|dv=c, —+ d
c, T+T[p+v2] v=c, 7 o v
(s,-s)r=RIn v =b Proved (b)
v,—b
(c) At constant entropy
c d—T+ R dv=0
V'T v-b
or -(1—1;+£ dv =0
T c,v-b
by integration, T(v—b)¥“ = constant Proved (c)
Op| |Ov ou ov
d —c,=T|==| |===1 =Ill—| +prll—
@ = Cy [ar]v[ar]p l[@V}T ”[ar]p

-+l - (),
[p n ;"2-] (v=b)- RT

v = b) (- 2av3) [g;—] +[p+ “J[av] —R
P P

From the equation

v or

[&] _ _RAv-b)
dT),” RT 2a
v-b)
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R

c —c,= Proved (d)
P 1-2a(v—b)'/RT v}

(3
T

(hy—h)y = (py,—pv) +a

1 i] Proved (e)
i V2

Example 11.8

The uirial equation of state of a gas is given by

pv=RT(1 +Bp+C'p?>+..)
=RT? —

T _8_\:_ —-v
6TP dr

Hence, prove that the inversion temperature of a van der Waals’ gas is twice the Boyle temperature.

Show that

. dB’
lim

p—0

Solution
pv=RT(1 +Bp+C'p*+..)
RT

v= — + RTB' + RTpC' + ...
p
v R dB’ dc’
—| = — +RT + RB’' + RT; + RpC’ + ...
[{;’T)p » T Pgr TR
v RT dB’ dc’
~——| = —— 4+ RT? — + RTB' + RT? + RTpC' + ...
[BT],, » dr Par TP
Ov dB’ dc’
T|—| -v=RT? — +RT?*p —+...
[ ] Y dr Par
ll,Jz L T ﬂ —v
_RT?

=P
c, |dr ' Par

p

dB’ dcC’ l
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lim _ RT? dB’
P00 ey dT
!
or lim{T dv —v| =RT? dB Proved
p—0| \dT b dr
For a van der Waals’ gas, to find Boyle temperature T,
B=b-2 =0
RT
a
T, = —
B bR
g-B - b __a
RT RT RT?
' _ b 2
dT RT* R}
2
limquT [_b Za]_o
p—0 7 cp RT2 R2T3
b 2a
RT* R}
—_— E
' bR
T, =2Ty
Proved

or Inversion temperature = 2 x Boyle temperature

Example 11.9
Over a certain range of pressures and temperatures, the equation of a certain substance is given by the
relation
_RT_C
p T

where C is a constant. Derive an expression for: (a) the change of enthalpy and (b) the change of entropy,

of this substance in an isothermal process.

Solution (a) From Eq. (11.15)

dp

dh:cpdT+ v—T[-C?—K]
BTP

? v—T[—QX]
BTP

dp

(hy=h)r = j;
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NOW, viﬂ_%
p T

Ov R 3C

= —+—-—

an P T4
ov RT 3C
aT T
p 4 T
av RT C RT 3C 4c

v—T = = =

a7 3 3
orT |, p T p T T}

On substitution,
_ P 4C o 4C
(hy=h)r= [ -7 =5 2i-p),

(b) Using second Tds equation

ov
TdS = T-T|—
%4 [BT]p d
ov
dST:_[a_T] dp.].=—[£+_3£] de
P p T*

3C
(5,-s)r=RIn 1’%+T_4 (P, - P)r
2

Example 11.10

Agron gas is compressed reversibly and isothermally at the rate of 1.5 kg/s from 1 atm, 300 K to 400 atm.
Calculate the power required to run the compressor and the rate at which heat must be removed from the
compressor. The gas is assumed to obey the Redlich-Kwong equation of state, for which the constants
are:

2 —2

oeT25
R I andb=0.08664R I,
p(‘ pC

a=0.42748

For argon, T, = 151 K and p, = 48 atm. Take R = 0.082 litre-atm/gmol-K.

Solution  Substituting the values of p. T, and R,

2 25
82} (151 Y2 .6
a=042748 82 N7 _ g, g0 2m K em®
(gmol)
3
b= o_ogﬁmw =224 M
gmol

Substituting the numerical values of p,,T. 5, @, b and R into the Redlich-Kwong equation
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__RT _ a
v—b T"*w(v+b)
v3 4924 v} +335.6 v,—43,440=0

p

from which we obtain
v,=56.8 cm*/g mol
Since p, = 1 atm, the volume of the gas at the initial state can be obtained from the ideal gas

equation:

= 24,600 cm*/g mol

Vi

_ RT, _82x300
p 1
For isothermal compression,

P

Mhy =y~ ={f -7(5) dp]T

P

Now, d(pv) =pdv +vdp
P
deP=P2V2 PN

pi

fro

v, T

. v av|] {dp

Since [_—] =_[__.] [_]
or ), Op ), \0T},

fl2) #| -2

vy

we have

T

v, 6p
Hence, Ah, =h —h = p,v, — PV, — flP—T[a—T] dv
v v T
. . . ap R a
According to Redlich-Kwong equation, we have, | ——|= +—7
oT) v—b 2I°"”°v(v+b)

: t —3a
Thus, A = —n = vV, — DV, ) — O S —
hlZ }b hl (pZ 2 pl‘ l) ‘!‘|2T”2V(V+b)

dv

v

1.5a 1, (v, +b)/v,
= v ) =222
(P22 = p1) b (n+b)/w

Substituting the numerical values,

h,—h=—1,790 J/g mol
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P> av
As, =5, -5 f ar
P

P

T

For the Redlich-Kwong equation this becomes,

V2

-l

\f T

R a
S, — 8§ = + dv
20 !\ v—b 2T*%y(v+b)
=Rlnv2_b— a (v, +b)/v,
vi=b 26T¥* (v, +b)/v,
Substituting the numerical values,
s, —8 = —357 J/gmol -K
le =ml(s, —5,)
5
39.8 g/gmol g mol K
=-4.29x10"J/h
=—11.917 kW (heat removed from the gas) Ans.
sz = le +m(hy —h)
7, 10°
=-4.29 x10" +——x1790
39.9
=-3.84x10"J/h
= —10.67 kW(Work is done on the gas) Ans.

B i >|\\27 A i .

11.1 What is the condition for exact differential?
11.2

11.3

Derive Maxwell’s equations.

Write down the first and second 7dS equations,
and derive the expression for the difference in
heat capacities, C, and C,. What does the expres-
sion signify?

Define volume expansivity and isothermal
compressibility.

114

11.5 Show that the slope of an isentrope is greater than
that of an isotherm on p—v plot. How is it meaning-

ful for estimating the work of compression?

What is the energy equation? How does this equa-
- tion lead to the derivation of the Stefan-Boltzman
law of thermal radiation?

11.7

11.8

11.9

11.10

1111

11.12

Show that the internal energy and enthalpy of an
ideal gas are functions of temperature only.

Why are dU = C, dT and dH = C, dT true for an
ideal gas in any process, whereas these are true
for any other substance only at constant volume
and at constant pressure respectively?

Explain Joule-Kelvin effect. What is inversion
temperature?

What is Joule-Thomson coefficient? Why is it
zero for an ideal gas?

Why does the hydrogen gas need to be precooled
before being throttled to get the cooling effect?
Why does the maximum temperature drop occur
if the state before throttling lies on the inversion
curve?



11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

11.21
11.22

Thermodynamic Relations, Equilibrium and Third Law

Why does the Gibbs function remain constant 11.23

during phase transition?
11.24
11.25

What are the characteristics of the first order
phase transition?

Write down the representative equation for phase
transition. Why does the fusion line for water
have negative slope on the p—T diagram?

11.26

Why is the slope of the sublimation curve at the
triple point on the p—T diagram greater than that
of the vaporization curve at the same point?

11.27
11.28

Explain how thermodynamic properties are eval-

uated from an equation of state. 11.29

Illustrate how enthalpy change and entropy
change of a gas can be estimated with the help of
an equation of state.

11.30

State the important thermodynamic criteria which

an equation of state should satisfy. 1131

Explain how the Boyle temperature is yielded

when: 1132

lim Qz_’_ 11.33
—0(8p). = 0
What is foldback temperature?

0z

Show that for an inversion curve ——J =0.
or b

Problems

Derive the following equations

OoF OFIT
=F-T|&| -
@ v [67‘ , [ ar ]v

aF

or

H=G—T[§ =—T2[
ar

® C,=-T

(©

8*G

@ C=-T|=

P
11.3

Derive the equation
[ajJ =T p
o), aT?

v

«3

Define chemical potential of a component in
terms of U, H, and G.

What is the use of the Gibbs entropy equation?

Explain the significance of the Gibbs-Duhem
equation.

State the conditions of equilibrium of a heteroge-
neous system.

What do you understand by phase equilibrium?

Give the Gibbs phase rule for a nonreactive systsm.
Why is the triple point of a substance nonvariant?
What are the four types of equilibrium? What is
stable equilibrium?

State the conditions of spontaneous change, equi-
librium and criterion of stability for: (a) a system
having constant U and V (i.e., isolated), and (b) a
system having constant 7" and p.

What do you understand by neutral and unstable
equilibrium?

What is metastable equilibrium?

Show that for a system to be stable, these condi-
tions are satisfied

(@ C,>0 (thermal stability)

op
(b) [W]T <0 (mechanical stability)

®

Prove that c_ of an ideal gas is a function of
T only.

(c) In the case of a gas obeying the equation of
state

o4 B
RT v
where B” is a function of T only, show that

2

c,= -RL & r1y4 (),

v d7?
where (c ), is the value at very large
volumes.
Derive the third 7dS equation
TdS=C, or dp+Cp[a—T] dv
ap), ov ),

and show that the three 7dS equations may be
written as
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TdS = C,dT + %T— dv

(b) TdS = C,dT- V3 Tdp

©
11.4

(@

(b)

11.5

(a)

(b

©)

116 (a)

®)

11.7 (a)

C
ras= kdp + —=

5 v 4V

Derive the equations

vy (op
c =1|=| | £
= (5], [57)

[5’211] -5
aT), VAT
(@p/dT),  ~
(8p/oT), -1

Derive the equations

e
¢ ar),\aT ),

57
ar), AT
(avroer), 1
(8v /aT)

P

-~

Prove that the slope of a curve on a Mollier
diagram representing a reversible isothermal
process is equal to

r- L

B
Prove that the slope of a curve on a Mollier
diagram representing a reversible isochoric
process is equal to

-1
T+ —
B

Show that

L (oviT
me=T" "1 |

For 1 mole of a gas, in the region of mod-
erate pressures, the equation of sate may be
written as

yi

=z =1+Bp+Cp?

-

11.9

11.10

11.11

where B’ and C' are functions of tempera-
ture only.

(b) Show thatasp — 0

— . dB'
c, — RT* —
Hi dr
(c) Show that the equation of the inversion
curve is
__dag'idr
P="4car

Prove the following functional relationship of the
reduced properties for the inversion curve of a
van der Waals’ gas
2
3(3v, -1 9(2v, -1
T=_(___'__)_ andpr=———( > )

r 2
4v; vy

Hence, show that

Maximum inversion temperature
Critical temperature

=6.75

Minimum inversion temperature

and —
Critical temperature

=0.75

Estimate the maximum inversion temperature of
hydrogen if it is assumed to obey the equation of
state

pV=RT+Bp+B,p*+B,p’+ ...
For hydrogen, B, x 10° = a + 102 bT + 10* ¢/T
where a = 166, b = - 7.66, c = —172.33

The vapour pressure of mercury at 399 K and
401 K is found to be 0.988 mm and 1.084 mm
of mercury respectively. Calculate the latent
heat of vaporization of liquid mercury at 400 K.

Ans. 61,634.96 kJ/kg mol

In the vicinity of the triple point, the vapour pres-
sure of liquid ammonia (in atmospheres) is repre-
sented by

3063
Inp =15.16 T
This is the equation of the liquid-vapour bound-
ary curve in a p—T diagram. Similarly, the vapour
pressure of solid ammonia is

Inp=1870- 2%

T
(a) What is the temperature and pressure at the
triple point?
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11.13

11.14

11.15

11.16

11.17

11.18

Thermodynamic Relations, Equilibrium and Third Law

What are the latent heats of sublimation and

vaporization?

What is the latent heat of fusion at the triple

point? Ans. 1952 K, 0.585 atm.,
1498 kJ/kg, 1836 kJ/kg, 338 kJ/kg

It is found that a certain liquid boils at a tempera-
? ture of 95°C at the top of a hill, whereas it boils ata
temperature of 105°C at the bottom. The latent heat
is 4.187 kJ/g mole. What is the approximate height
of the hill? Assume 7, =300 K. Ans. 394 m

Show that for an ideal gas in a mixture of ideal
gases

(b)

©

dp, = .’flL.;_”L dT + y dp + RTd In x,

Compute 4. for a gas whose equation of state is
H 24 q

p(v—b)=RT Ans. p; =—b/cp
Show that
8, Ok
o 23
(s o),

Ou ov v
b) |2 =72 — 5|
® [apJT [ar]p P [ap]T

Two particular systems have the following equa-
tions of state

1 _3-N? 1 _55N®
PRpo M rm =Ry

7™
where R = 8.3143 kJ/kg mol K. The mole number
of the first systemn is NV = 2, and that of the second
is N@ = 3. The two systems are separated by a dia-
thermal wall, and the total energy in the composite
system is 25.120 kJ. What is the internal energy of
each system in equilibrium? Ans. 7.2 kJ, 17.92 kJ
Two systems with the equations of state given
in Problem 11.16 are separated by a diathermal
wall. The respective mole numbers are NV = 2
and N® = 3. The initial temperatures are T() =
250 K and 7® = 350 K. What are the values of
UM and U@ after equilibrium has been estab-
lished? What is the equilibrium temperature?
Ans. 8.02kJ,20.04 kJ, 3214K

Show that the change in latent heat L with tem-
perature is given by the following relation

dL L V”I,BI” - V”ﬁ”
&) =r-an+ i

vy —v

11.19

11.20

11.21

11.22

11.23

11.24
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Show that for a van der Waals’ gas, the Joule-
Thomson coefficient is given by

2a (v — b)2 — RTHYV?
RTV’ —2a(v-b)

\4

%

J

At 273.15 K the specific volumes of water and
ice are 0.001 and 0.001091 m?/kg and the latent
heat of fusion of ice is 334 kJ/kg. Determine the
melting point increase due to increase of pressure
by 1 atm (101.325 kPa). Ans. —0.00753 K
Calculate the latent heat of vaporization of
steam formed by boiling water under a pressure
of 101.325 kPa. At a pressure near this, a rise of
temperature of 1 K causes an increase of vapour
pressure of 3.62 kPa. Ans. 2257 kJ/kg
It is known that radiation exerts a pressure p =
1/3 u , where u is the energy per unit volume.

(a) Show that du = TdS + —;—[Ts——%u] dv

where s is the entropy per unit volume.

(®)

Assuming « and s as functions of tempera-
ture only, show that

(i) u=As*3

.. 4

ii) s= = al?
(i) 3
(iii) u = aT*

where 4 is the constant of integration and a
= 81/256 4°.

Show that the average time radiation remains
in a spherical enclosure of radius 7 is given by

©

-4
3¢
where c is the speed of radiation.
(d) If Eg is the energy emitted per unit area of
spherical surface per unit time, show that
Eg=oT*
where o = ac/4 and T is the temperatur of
the surface.
Show that the inversion temperature of a van der
Waals® gas is given by T, = 2a/bR.

Show that:
a(p/T
(a) [B_u] =T? (p/T)
ov); or .
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11.25

11.26

process. ~ R
Ans.(s,~s)y=RIn v, —b " ay2 v, (V1 + )
v] -b 26T v (V2 + b)

(, —u), = a v, (v +b)

2 VT 2pTV2 Ty (v, + b)

11.27

11.28

11.29

11.30
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®) [a"] —-1?
T

6(v/T)
Op

orT

Show that for a van der Waals’ gas at low pres-
sures, a Joule-Thomson expansion from pressure
P, to p, produces a temperature change which can
be found from the solution of

I,-T,
T,-T,

i

c
p]—-pz:_b}.’. (I,-T)+T,n

where T; is the inversion temperature.

Using the Redlick-Kwong equation of state,
develop expressions for the changes in entropy
and internal energy of a gas in an isothermal

Find the change of entropy of a gas following
Clausius equation of state at constant temperature

po—b)=RT Ans. Rln 22—
v—b
(a) Show that for a van der Waals’ gas
_ RV (v - b)
RTV} —2a (v - b)2
vi(v— b)2

ky =

RTV —2a(v—b)’
(b) What is the value of k /3 expressed in its
simplest form?

(c) What do the above relations become when a
=0, b = 0 (ideal gas)?
(a) Show that
) [3—”] ke,
op), B

v

C
@ (3] --»
ov), Vg
(b) Hence show that the slope of a reversible
adiabatic process on p—v coordinates is

P __
dv kv
where k is the isothermal compressibility.

According to Berthelot, the temperature effect of
the second virial coefficient is given by

11.31

11.32

11.33

11.34

11.35

b a
B(T)y= ———
(1) T 73
where a and b are constants. Show that according
to Berthelot,

Tinv/TB = J’j
The following expressions for the equation of
state and the specific heat ¢, are obeyed by a cer-
tain gas:
RT
V= 7— +al? and c,=A4+BT+Cp

where a, 4, B, C are constants. Obtain an expres-
sion for (a) the Joule-Thomson coefficient, and
(b) the specific heat c_.

2
Ans.(a)p,:__i___
A+ BT +Cp
CRT 2
(b) ¢ =A+BT+ __p|ytel
v—aTl v—aT?

Determine the maximum Joule-Thomson inver-
sion temperature in terms of the critical tempera-
ture 7, predicted by the

(a) van der Waals equations
(b) Redlich—Kwong equation
(c) Dieterici equation
Ans. (3) 6.75 T, (b) 5.34 T, (c) 87,

From the virial form of the equation of state of a gas
RT
v=— +RTB' (T)+ RTC' (T)p + ...
p

show that the Joule-Thomson coefficient is
_ RT*[dB’ dC’ ]

= — = p+..
Hy ar ar ?

c
P
(b) For a van der Waals gas

bRT —a

B(T)= T

Show that the limiting value of 1, at low pressure is

1(2a

L

M=o \RT ]
Tv3?

%

For a simple compressible system, show that

dvir or |,

Show that k. — k =

(@)
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ovIT

(b) 3T

@] =_T72
op|;

P

The liquid-vapour equilibrium curve for nitrogen

over the range from the triple point to the normal

boiling point may be expressed by the relation:
logp=A4-BT- %

where p is the vapour pressure in mm Hg, T is the

temperature in K, and 4 = 7.782, B = 0.006265,

and C = 341.6.

(@) Derive an expression for the enthalpy of vapor-
ization hfg interms of 4, B, C, T and Ve

(b) Calculate hg, for nitrogen at 71.9 K with v,
= 11,530 cm?/gmol. Ans. 5,790 J/gmo

For a gas obeying the van der Waals equation of
state, show that:

R

a) ¢ —c, =
@ == a(v— o) /RTY

dc ) .

v| =T|{—=| =0toprovethatc isa
®) Ov |p aT? y P M
function of temperature only.

dc 8°
© |32 =-T|>=

op |; oT

p
2av® — 6abv™*

p— “2 4 2abv™ ’
( av 2ab 3)

=R°T
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to prove that ¢, for a van der Waals gas is
not a function of temperature only.

(d) The relation between T and v is given by:
T(v- b)R/ “ = constant
(e) The relation between p and v is given by:

p+ %](v - b)HR/C‘ = constant.
v

Nitrogen at a pressure of 250 atm and a tempera-
ture of 400 K expands reversibly and adiabatically
in a turbine to an exhaust pressure of 5 atm. The
flow rate is 1 kg/s. Calculate the power output if
nitrogen obeys the Redlich-Kwong equation of
state. For nitrogen at 1 atm take.

S 6.903 — 0.3753 x 10737 + 1.930 x 107672
-6.861 x 10°73

where [ is in cal/gmol-K and T'is in K.
T.,=1262K,
p, = 33.5 atm.
Hints: See Fig. P-11.34
h,—h, = (h,—h,) + (h,— hy) + (h; — hy) and
5;=5,=0=(s;~5,) + (5,—5;) +(s, —5,)
a =154 x 10 atm/K'2 cm®/(g mol)?, b

= 26.8 cm*/gmol

For nitrogen,
Ans. 272 kW

By trial-and-error, v, = 143 cm’/g mol, v, =
32,800 cm?/g mol

T,= 124K, h, - h, = 7.61 kl/g mol.



12.1 ‘ SIMPLE STEAM POWER CYCLE

A power cycle continuously converts heat (energy released by the burning of fuel) into work (shaft work),
in which a working fluid repeatedly performs a succession of processes. In the vapour power cycle the
working fluid, which is water, undergoes a change of phase. Figure 12.1 gives the schematic of a simple
steam power plant working on the vapour power cycle. Heat is transferred to water in the boiler from an
external source (furnace, where fuel is continuously burnt) to raise steam, the high pressure, high tempera-
ture steam leaving the boiler expands in the turbine to produce shaft work, the steam leaving the turbine
condenses into water in the condenser (where cooling water circulates), rejecting heat, and then the water
is pumped back to the boiler. Figure 12.2 shows how a unit mass of the working fluid, sometimes in the

High pressure, high
temperature steam

Wr
/
Furnace

pegle)

E T Boiler Generator
Airj Combus- Ri\_/er
and tion Condenser| &= |~ | (Sink)
fuel  products \ ZJ T,

Condensate @ Circulating
pump \»(q pump
High pressure water W
p
Simple steam power plant

State change State change State change State change
from4to1 from 1t0 2 from2t0 3 from3to 4
(in boiler) (in turbine) (in condenser) (in pump)

One kg H,0 executing a heat engine cycle
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S 5 T— % —
&
(Furnace) B c (River or sea)
n AN OJHO P "
% P S

<0 v

I \ Cyclic heat engine

We

A

yclic heat engine with water as the working fluid

liquid phase and sometimes in the vapour phase, undergoes various external heat and work interactions in
executing a power cycle. Since the fluid is undergoing a cyclic process, there will be no net change in its
internal energy over the cycle, and consequently the net energy transferred to the unit mass of the fluid as
heat during the cycle must equal the net energy transfer as work from the fluid. Figure 12.3 shows the cyclic
heat engine operating on the vapour power cycle, where the working substance, water, follows along the
B-T-C-P (Boiler-Turbine-Condenser-Pump) path, interacting externally as shown, and converting net heat
input to net work output continuously. By the first law

=2
cgc_‘ie Qnet cycle net
or 0, - =W - W

where Q, = heat transferred to the working fluid (kJ/kg)
Q, = heat rejected from the working fluid (kJ/kg)
W, = work transferred from the working fluid (kJ/kg)

W, = work transferred into the working fluid (kJ/kg)

The efficiency of the vapour power cycle would be given by

Whet ZWT—WP__Ql_QZ =1__Q_2_ (12.1)

Teyele = "0, %) 2) 0

12.2 ‘ RANKINE CYCLE

For each process in the vapour power cycle, it is possible to assume a hypothetical or ideal process which repre-
sents the basic intended operation and involves no extraneous effects. For the steam boiler, this would be a revers-
ible constant pressure heating process of water to |

form steam, for the turbine the ideal process would d) Wy

be a reversible adiabatic expansion of steam, for the
condenser it would be a reversible constant pressure o;
heat rejection as the steam condenses till it becomes
saturated liquid, and for the pump, the ideal process ©

would be the reversible adiabatic compression of Condenser

this liquid ending at the initial pressure. When all Cooling water
these four processes are ideal, the cycle is an ideal @ Q,

cycle, called a Rankine cycle. This is a reversible T

cycle. Figure 12.4 shows the flow diagram of the
Rankine cycle, and in Fig. 12.5, the cycle has been @R A simple steam plant

Boiler

Pump ~w,
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(b)
Rankine cycle on p—v, T-s and h-s diagrams

plotted on the p—v, T—s, and A—s planes. The numbers on the plots correspond to the numbers on the flow dia-
gram. For any given pressure, the steam approaching the turbine may be dry saturated (state 1) wet (state 1),
or superheated (state 1”), but the fluid approaching the pump is, in each case, saturated liquid (state 3). Steam
expands reversibly and adiabatically in the turbine from state 1 to state 2 (or 1’ to 2, or 1” to 2”), the steam leav-
ing the turbine condenses to water in the condenser reversibly at constant pressure from state 2 (or 2/, or 2") to
state 3, the water at state 3 is then pumped to the boiler at state 4 reversibly and adiabatically, and the water is
heated in the boiler to form steam reversibly at constant pressure from state 4 to state 1 (or 1’ or 1).

For purposes of analysis the Rankine cycle is assumed to be carried out in a steady flow operation.
Applying the steady flow energy equation to each of the processes on the basis of unit mass of fluid, and
neglecting changes in kinetic and potential energy, the work and heat quantities can be evaluated in terms of
the properties of the fluid.

For 1 kg fluid
The S.EE.E. for the boiler (control volume) gives
hy+ 0, =h,
O, =h,—h, (12.2)
The S.EE.E. for the turbine as the control volume gives
h =W, +h,
Wie=h—h, (12.3)
Similarly, the S.F.E.E. for the condenser is
hy=0,+hy
O, =hy—hy (12.4)
and the S.FE.E. for the pump gives
hy + W,=h, ‘
W,=h,— h, (12.5)
The efficiency of the Rankine cycle is then given by
- —h)—(h, —

O ) b —hy



